Structured Model Pruning for Efficient Inference in Computational Pathology
- URL: http://arxiv.org/abs/2404.08831v1
- Date: Fri, 12 Apr 2024 22:05:01 GMT
- Title: Structured Model Pruning for Efficient Inference in Computational Pathology
- Authors: Mohammed Adnan, Qinle Ba, Nazim Shaikh, Shivam Kalra, Satarupa Mukherjee, Auranuch Lorsakul,
- Abstract summary: We develop a methodology for pruning the widely used U-Net-style architectures in biomedical imaging.
We empirically demonstrate that pruning can compress models by at least 70% with a negligible drop in performance.
- Score: 2.9687381456164004
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent years have seen significant efforts to adopt Artificial Intelligence (AI) in healthcare for various use cases, from computer-aided diagnosis to ICU triage. However, the size of AI models has been rapidly growing due to scaling laws and the success of foundational models, which poses an increasing challenge to leverage advanced models in practical applications. It is thus imperative to develop efficient models, especially for deploying AI solutions under resource-constrains or with time sensitivity. One potential solution is to perform model compression, a set of techniques that remove less important model components or reduce parameter precision, to reduce model computation demand. In this work, we demonstrate that model pruning, as a model compression technique, can effectively reduce inference cost for computational and digital pathology based analysis with a negligible loss of analysis performance. To this end, we develop a methodology for pruning the widely used U-Net-style architectures in biomedical imaging, with which we evaluate multiple pruning heuristics on nuclei instance segmentation and classification, and empirically demonstrate that pruning can compress models by at least 70% with a negligible drop in performance.
Related papers
- CanvOI, an Oncology Intelligence Foundation Model: Scaling FLOPS Differently [0.0]
We present CanvOI, a ViT-g/10-based foundation model designed to enhance the capabilities of digital pathology.
By introducing larger tile sizes (380 x 380 pixels) and smaller patch sizes (10 x 10 pixels), we were able to optimize the model's performance.
arXiv Detail & Related papers (2024-09-04T17:15:44Z) - Sculpting Efficiency: Pruning Medical Imaging Models for On-Device
Inference [13.403419873964422]
We highlight the excess operational complexity in a suboptimally configured ML model from prior work.
Our results show a compression rate of 1148x with minimal loss in quality.
We consider avenues for future research in streamlining for clinical researchers to develop models quicker and better suited for real-world use.
arXiv Detail & Related papers (2023-09-10T17:34:14Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Low-dimensional Data-based Surrogate Model of a Continuum-mechanical
Musculoskeletal System Based on Non-intrusive Model Order Reduction [0.0]
Non-traditional approaches such as surrogate modeling using data-driven model order reduction are used to make high-fidelity models more widely available anyway.
We demonstrate the benefits of the surrogate modeling approach on a complex finite element model of a human upper-arm.
arXiv Detail & Related papers (2023-02-13T17:14:34Z) - IterMiUnet: A lightweight architecture for automatic blood vessel
segmentation [10.538564380139483]
This paper proposes IterMiUnet, a new lightweight convolution-based segmentation model.
It overcomes its heavily parametrized nature by incorporating the encoder-decoder structure of MiUnet model within it.
The proposed model has a lot of potential to be utilized as a tool for the early diagnosis of many diseases.
arXiv Detail & Related papers (2022-08-02T14:33:14Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Balancing Accuracy and Latency in Multipath Neural Networks [0.09668407688201358]
We use a one-shot neural architecture search model to implicitly evaluate the performance of an intractable number of neural networks.
We show that our method can accurately model the relative performance between models with different latencies and predict the performance of unseen models with good precision across different datasets.
arXiv Detail & Related papers (2021-04-25T00:05:48Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.