論文の概要: Arch-Router: Aligning LLM Routing with Human Preferences
- arxiv url: http://arxiv.org/abs/2506.16655v1
- Date: Thu, 19 Jun 2025 23:57:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.293583
- Title: Arch-Router: Aligning LLM Routing with Human Preferences
- Title(参考訳): Arch-Router: LLMルーティングを人間の好みで調整する
- Authors: Co Tran, Salman Paracha, Adil Hafeez, Shuguang Chen,
- Abstract要約: ルーティングは、異なるモデルの使用を運用する上で不可欠な技術になっている。
本稿では、クエリをユーザ定義ドメインにマッチさせることで、モデル選択をガイドする、嗜好整合型ルーティングフレームワークを提案する。
我々のアプローチは主観評価基準を捉え、ルーティング決定をより透明で柔軟にする。
- 参考スコア(独自算出の注目度): 1.859931123372708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid proliferation of large language models (LLMs) -- each optimized for different strengths, style, or latency/cost profile -- routing has become an essential technique to operationalize the use of different models. However, existing LLM routing approaches are limited in two key ways: they evaluate performance using benchmarks that often fail to capture human preferences driven by subjective evaluation criteria, and they typically select from a limited pool of models. In this work, we propose a preference-aligned routing framework that guides model selection by matching queries to user-defined domains (e.g., travel) or action types (e.g., image editing) -- offering a practical mechanism to encode preferences in routing decisions. Specifically, we introduce \textbf{Arch-Router}, a compact 1.5B model that learns to map queries to domain-action preferences for model routing decisions. Our approach also supports seamlessly adding new models for routing without requiring retraining or architectural modifications. Experiments on conversational datasets demonstrate that our approach achieves state-of-the-art (SOTA) results in matching queries with human preferences, outperforming top proprietary models. Our approach captures subjective evaluation criteria and makes routing decisions more transparent and flexible. Our model is available at: \texttt{https://huggingface.co/katanemo/Arch-Router-1.5B}.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な普及 – それぞれがさまざまな長所、スタイル、レイテンシ/コストプロファイルに最適化されている – によって、ルーティングは、さまざまなモデルの使用を運用する上で不可欠なテクニックになっています。
しかし、既存のLLMルーティングアプローチは2つの重要な方法に制限されている。それらは、主観的評価基準によって引き起こされる人間の嗜好を捉えるのに失敗するベンチマークを使用して性能を評価し、典型的には限られたモデルのプールから選択する。
本研究では、クエリをユーザ定義のドメイン(例えば、旅行)やアクションタイプ(例えば、画像編集)にマッチさせることで、モデル選択をガイドする嗜好整合ルーティングフレームワークを提案する。
具体的には、クエリをモデルルーティング決定のためのドメイン-アクションの好みにマップする方法を学習する、コンパクトな1.5Bモデルである、textbf{Arch-Router}を紹介する。
当社のアプローチは、再トレーニングやアーキテクチャの変更を必要とせずに、ルーティング用の新しいモデルをシームレスに追加する機能もサポートしています。
対話型データセットの実験により、我々のアプローチは、人間の好みとクエリを一致させることで、トッププロプライエタリなモデルよりも優れた結果が得られることを示した。
我々のアプローチは主観評価基準を捉え、ルーティング決定をより透明で柔軟にする。
我々のモデルは以下の通りである。
関連論文リスト
- Query Routing for Retrieval-Augmented Language Models [38.05904245087491]
Retrieval-Augmented Generation (RAG) は、知識集約タスクにおけるLarge Language Models (LLM) の性能を大幅に向上させる。
既存のルーティング手法はRAGシナリオで最適以下の性能を示すのに対し,外部文書はLLMのクエリ応答能力に動的に影響を及ぼす。
本稿では、文書埋め込みとRAG機能埋め込みを利用して知識表現シフトを捉えるパラメトリックなRAG対応ルーティング設計であるRAGを提案する。
論文 参考訳(メタデータ) (2025-05-29T03:44:56Z) - How Robust Are Router-LLMs? Analysis of the Fragility of LLM Routing Capabilities [62.474732677086855]
大規模言語モデル(LLM)ルーティングは,計算コストと性能のバランスをとる上で重要な戦略である。
DSCベンチマークを提案する: Diverse, Simple, and Categorizedは、幅広いクエリタイプでルータのパフォーマンスを分類する評価フレームワークである。
論文 参考訳(メタデータ) (2025-03-20T19:52:30Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
大きな言語モデル(LLM)は、日々のアプリケーションにますます組み込まれています。
個人ユーザの多様な嗜好との整合性を確保することは、重要な課題となっている。
数発のステアライメントのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-18T16:14:59Z) - Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback [87.37721254914476]
我々はHyPERを紹介した。HyPERは、人間または言語モデル(LM)にアノテーションを付与するハイブリッド推論ルータである。
その結果,HyPERを用いた人工選好と直接選好の混合は,RewardBenchでは7-13%しか使用せず,RM性能が向上していることがわかった。
また、HyPERの機能を分析した結果、安全上の懸念や複雑さが人間のフィードバックから最も恩恵を受けていることがわかりました。
論文 参考訳(メタデータ) (2024-10-24T20:04:15Z) - A Unified Approach to Routing and Cascading for LLMs [5.653106385738822]
様々なエージェントシステムに埋め込まれた大規模言語モデル(LLM)は、コストパフォーマンスのトレードオフを改善するためのモデル選択戦略の可能性を高めている。
既存の戦略には、クエリ毎にひとつのモデルが選択されるルーティング、あるいは、満足のいく回答が見つかるまで順次、より大きなモデルを実行するカスケードがある。
我々は、カスケードのための新しい最適戦略を導き、既存のルーティング戦略の最適性を証明する。
本稿では、ルーティングとカスケードを統合した統合フレームワークであるカスケードルーティングを理論的に最適な戦略として提案する。
論文 参考訳(メタデータ) (2024-10-14T10:00:49Z) - RouterRetriever: Routing over a Mixture of Expert Embedding Models [58.987116118425995]
本稿では、ルーティング機構を用いて、ドメイン固有の専門家の混在を利用した検索モデルであるReuterRetrieverを紹介する。
RouterRetrieverは、ドメイン固有の専門的な埋め込みモデルを混在させたルーティングの利点を示す最初の研究である。
論文 参考訳(メタデータ) (2024-09-04T13:16:55Z) - Inverse Optimization for Routing Problems [3.282021317933024]
Inverse Optimization (IO) を用いたルーティング問題における意思決定者の行動学習手法を提案する。
提案手法の柔軟性と実世界の可能性を示し,ルーティング問題における意思決定者の判断から学ぶ。
論文 参考訳(メタデータ) (2023-07-14T14:03:47Z) - AutoRC: Improving BERT Based Relation Classification Models via
Architecture Search [50.349407334562045]
BERTに基づく関係分類(RC)モデルは、従来のディープラーニングモデルよりも大幅に改善されている。
最適なアーキテクチャとは何かという合意は得られない。
BERTをベースとしたRCモデルのための包括的検索空間を設計し、設計選択を自動的に検出するためにNAS(Neural Architecture Search)手法を用いる。
論文 参考訳(メタデータ) (2020-09-22T16:55:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。