Off-Policy Actor-Critic for Adversarial Observation Robustness: Virtual Alternative Training via Symmetric Policy Evaluation
- URL: http://arxiv.org/abs/2506.16753v1
- Date: Fri, 20 Jun 2025 05:13:10 GMT
- Title: Off-Policy Actor-Critic for Adversarial Observation Robustness: Virtual Alternative Training via Symmetric Policy Evaluation
- Authors: Kosuke Nakanishi, Akihiro Kubo, Yuji Yasui, Shin Ishii,
- Abstract summary: Reinforcement learning methods designed to handle adversarial input observations have received significant attention.<n>We propose a novel off-policy method that eliminates the need for additional environmental interactions.<n>Our approach is theoretically supported by the symmetric property of policy evaluation between the agent and the adversary.
- Score: 0.7583052519127079
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, robust reinforcement learning (RL) methods designed to handle adversarial input observations have received significant attention, motivated by RL's inherent vulnerabilities. While existing approaches have demonstrated reasonable success, addressing worst-case scenarios over long time horizons requires both minimizing the agent's cumulative rewards for adversaries and training agents to counteract them through alternating learning. However, this process introduces mutual dependencies between the agent and the adversary, making interactions with the environment inefficient and hindering the development of off-policy methods. In this work, we propose a novel off-policy method that eliminates the need for additional environmental interactions by reformulating adversarial learning as a soft-constrained optimization problem. Our approach is theoretically supported by the symmetric property of policy evaluation between the agent and the adversary. The implementation is available at https://github.com/nakanakakosuke/VALT_SAC.
Related papers
- Robust off-policy Reinforcement Learning via Soft Constrained Adversary [0.7583052519127079]
We introduce an f-divergence constrained problem with the prior knowledge distribution.
We derive two typical attacks and their corresponding robust learning frameworks.
Results demonstrate that our proposed methods achieve excellent performance in sample-efficient off-policy RL.
arXiv Detail & Related papers (2024-08-31T11:13:33Z) - Adaptive Opponent Policy Detection in Multi-Agent MDPs: Real-Time Strategy Switch Identification Using Running Error Estimation [1.079960007119637]
OPS-DeMo is an online algorithm that employs dynamic error decay to detect changes in opponents' policies.
Our approach outperforms PPO-trained models in dynamic scenarios like the Predator-Prey setting.
arXiv Detail & Related papers (2024-06-10T17:34:44Z) - Belief-Enriched Pessimistic Q-Learning against Adversarial State
Perturbations [5.076419064097735]
Recent work shows that a well-trained RL agent can be easily manipulated by strategically perturbing its state observations at the test stage.
Existing solutions either introduce a regularization term to improve the smoothness of the trained policy against perturbations or alternatively train the agent's policy and the attacker's policy.
We propose a new robust RL algorithm for deriving a pessimistic policy to safeguard against an agent's uncertainty about true states.
arXiv Detail & Related papers (2024-03-06T20:52:49Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Imitation Learning by State-Only Distribution Matching [2.580765958706854]
Imitation Learning from observation describes policy learning in a similar way to human learning.
We propose a non-adversarial learning-from-observations approach, together with an interpretable convergence and performance metric.
arXiv Detail & Related papers (2022-02-09T08:38:50Z) - Off-policy Reinforcement Learning with Optimistic Exploration and
Distribution Correction [73.77593805292194]
We train a separate exploration policy to maximize an approximate upper confidence bound of the critics in an off-policy actor-critic framework.
To mitigate the off-policy-ness, we adapt the recently introduced DICE framework to learn a distribution correction ratio for off-policy actor-critic training.
arXiv Detail & Related papers (2021-10-22T22:07:51Z) - ROMAX: Certifiably Robust Deep Multiagent Reinforcement Learning via
Convex Relaxation [32.091346776897744]
Cyber-physical attacks can challenge the robustness of multiagent reinforcement learning.
We propose a minimax MARL approach to infer the worst-case policy update of other agents.
arXiv Detail & Related papers (2021-09-14T16:18:35Z) - A Deep Reinforcement Learning Approach to Marginalized Importance
Sampling with the Successor Representation [61.740187363451746]
Marginalized importance sampling (MIS) measures the density ratio between the state-action occupancy of a target policy and that of a sampling distribution.
We bridge the gap between MIS and deep reinforcement learning by observing that the density ratio can be computed from the successor representation of the target policy.
We evaluate the empirical performance of our approach on a variety of challenging Atari and MuJoCo environments.
arXiv Detail & Related papers (2021-06-12T20:21:38Z) - Scalable Bayesian Inverse Reinforcement Learning [93.27920030279586]
We introduce Approximate Variational Reward Imitation Learning (AVRIL)
Our method addresses the ill-posed nature of the inverse reinforcement learning problem.
Applying our method to real medical data alongside classic control simulations, we demonstrate Bayesian reward inference in environments beyond the scope of current methods.
arXiv Detail & Related papers (2021-02-12T12:32:02Z) - Robust Reinforcement Learning on State Observations with Learned Optimal
Adversary [86.0846119254031]
We study the robustness of reinforcement learning with adversarially perturbed state observations.
With a fixed agent policy, we demonstrate that an optimal adversary to perturb state observations can be found.
For DRL settings, this leads to a novel empirical adversarial attack to RL agents via a learned adversary that is much stronger than previous ones.
arXiv Detail & Related papers (2021-01-21T05:38:52Z) - Strictly Batch Imitation Learning by Energy-based Distribution Matching [104.33286163090179]
Consider learning a policy purely on the basis of demonstrated behavior -- that is, with no access to reinforcement signals, no knowledge of transition dynamics, and no further interaction with the environment.
One solution is simply to retrofit existing algorithms for apprenticeship learning to work in the offline setting.
But such an approach leans heavily on off-policy evaluation or offline model estimation, and can be indirect and inefficient.
We argue that a good solution should be able to explicitly parameterize a policy, implicitly learn from rollout dynamics, and operate in an entirely offline fashion.
arXiv Detail & Related papers (2020-06-25T03:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.