FOCUS: Unified Vision-Language Modeling for Interactive Editing Driven by Referential Segmentation
- URL: http://arxiv.org/abs/2506.16806v1
- Date: Fri, 20 Jun 2025 07:46:40 GMT
- Title: FOCUS: Unified Vision-Language Modeling for Interactive Editing Driven by Referential Segmentation
- Authors: Fan Yang, Yousong Zhu, Xin Li, Yufei Zhan, Hongyin Zhao, Shurong Zheng, Yaowei Wang, Ming Tang, Jinqiao Wang,
- Abstract summary: Recent Large Vision Language Models (LVLMs) demonstrate promising capabilities in unifying visual understanding and generative modeling.<n>We introduce FOCUS, a unified LVLM that integrates segmentation-aware perception and controllable object-centric generation within an end-to-end framework.
- Score: 47.8417810406568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent Large Vision Language Models (LVLMs) demonstrate promising capabilities in unifying visual understanding and generative modeling, enabling both accurate content understanding and flexible editing. However, current approaches treat "what to see" and "how to edit" separately: they either perform isolated object segmentation or utilize segmentation masks merely as conditional prompts for local edit generation tasks, often relying on multiple disjointed models. To bridge these gaps, we introduce FOCUS, a unified LVLM that integrates segmentation-aware perception and controllable object-centric generation within an end-to-end framework. FOCUS employs a dual-branch visual encoder to simultaneously capture global semantic context and fine-grained spatial details. In addition, we leverage a MoVQGAN-based visual tokenizer to produce discrete visual tokens that enhance generation quality. To enable accurate and controllable image editing, we propose a progressive multi-stage training pipeline, where segmentation masks are jointly optimized and used as spatial condition prompts to guide the diffusion decoder. This strategy aligns visual encoding, segmentation, and generation modules, effectively bridging segmentation-aware perception with fine-grained visual synthesis. Extensive experiments across three core tasks, including multimodal understanding, referring segmentation accuracy, and controllable image generation, demonstrate that FOCUS achieves strong performance by jointly optimizing visual perception and generative capabilities.
Related papers
- X-SAM: From Segment Anything to Any Segmentation [63.79182974315084]
Large Language Models (LLMs) demonstrate strong capabilities in broad knowledge representation, yet they are inherently deficient in pixel-level perceptual understanding.<n>We present X-SAM, a streamlined Multimodal Large Language Model framework that extends the segmentation paradigm from textitsegment anything to textitany segmentation.<n>We propose a new segmentation task, termed Visual GrounDed (VGD) segmentation, which segments all instance objects with interactive visual prompts and empowers MLLMs with visual grounded, pixel-wise interpretative capabilities.
arXiv Detail & Related papers (2025-08-06T17:19:10Z) - Kernel-based Unsupervised Embedding Alignment for Enhanced Visual Representation in Vision-language Models [18.02840698188587]
We propose a novel kernel-based method to align CLIP's visual representation with that of DINOv2.<n>Our image-only alignment fine-tuning exhibits significant improvements in zero-shot object recognition, fine-grained spatial reasoning.
arXiv Detail & Related papers (2025-06-03T07:44:43Z) - Deformable Attentive Visual Enhancement for Referring Segmentation Using Vision-Language Model [0.8747606955991707]
We propose a vision-language model that incorporates architectural improvements to enhance segmentation accuracy and cross-modal alignment.<n>SegVLM shows strong generalization across diverse datasets and referring expression scenarios.
arXiv Detail & Related papers (2025-05-25T17:42:53Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
High-resolution images and videos pose a barrier to their broader adoption.<n> compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs.<n>We introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments.
arXiv Detail & Related papers (2024-11-26T09:36:02Z) - More Pictures Say More: Visual Intersection Network for Open Set Object Detection [4.206612461069489]
We introduce a strong DETR-based model, Visual Intersection Network for Open Set Object Detection (VINO)
VINO constructs a multi-image visual bank to preserve the semantic intersections of each category across all time steps.
Our approach guarantees a more precise alignment between target category semantics and region semantics, while significantly reducing pre-training time and resource demands.
arXiv Detail & Related papers (2024-08-26T05:52:35Z) - PSALM: Pixelwise SegmentAtion with Large Multi-Modal Model [49.80313655590392]
PSALM is a powerful extension of the Large Multi-modal Model (LMM) to address the segmentation task challenges.
It incorporates a mask decoder and a well-designed input schema to handle a variety of segmentation tasks.
The flexible design of PSALM supports joint training across multiple datasets and tasks, leading to improved performance and task generalization.
arXiv Detail & Related papers (2024-03-21T17:50:47Z) - Generalizable Entity Grounding via Assistance of Large Language Model [77.07759442298666]
We propose a novel approach to densely ground visual entities from a long caption.
We leverage a large multimodal model to extract semantic nouns, a class-a segmentation model to generate entity-level segmentation, and a multi-modal feature fusion module to associate each semantic noun with its corresponding segmentation mask.
arXiv Detail & Related papers (2024-02-04T16:06:05Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.