X-SAM: From Segment Anything to Any Segmentation
- URL: http://arxiv.org/abs/2508.04655v1
- Date: Wed, 06 Aug 2025 17:19:10 GMT
- Title: X-SAM: From Segment Anything to Any Segmentation
- Authors: Hao Wang, Limeng Qiao, Zequn Jie, Zhijian Huang, Chengjian Feng, Qingfang Zheng, Lin Ma, Xiangyuan Lan, Xiaodan Liang,
- Abstract summary: Large Language Models (LLMs) demonstrate strong capabilities in broad knowledge representation, yet they are inherently deficient in pixel-level perceptual understanding.<n>We present X-SAM, a streamlined Multimodal Large Language Model framework that extends the segmentation paradigm from textitsegment anything to textitany segmentation.<n>We propose a new segmentation task, termed Visual GrounDed (VGD) segmentation, which segments all instance objects with interactive visual prompts and empowers MLLMs with visual grounded, pixel-wise interpretative capabilities.
- Score: 63.79182974315084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) demonstrate strong capabilities in broad knowledge representation, yet they are inherently deficient in pixel-level perceptual understanding. Although the Segment Anything Model (SAM) represents a significant advancement in visual-prompt-driven image segmentation, it exhibits notable limitations in multi-mask prediction and category-specific segmentation tasks, and it cannot integrate all segmentation tasks within a unified model architecture. To address these limitations, we present X-SAM, a streamlined Multimodal Large Language Model (MLLM) framework that extends the segmentation paradigm from \textit{segment anything} to \textit{any segmentation}. Specifically, we introduce a novel unified framework that enables more advanced pixel-level perceptual comprehension for MLLMs. Furthermore, we propose a new segmentation task, termed Visual GrounDed (VGD) segmentation, which segments all instance objects with interactive visual prompts and empowers MLLMs with visual grounded, pixel-wise interpretative capabilities. To enable effective training on diverse data sources, we present a unified training strategy that supports co-training across multiple datasets. Experimental results demonstrate that X-SAM achieves state-of-the-art performance on a wide range of image segmentation benchmarks, highlighting its efficiency for multimodal, pixel-level visual understanding. Code is available at https://github.com/wanghao9610/X-SAM.
Related papers
- Cross-Domain Semantic Segmentation with Large Language Model-Assisted Descriptor Generation [0.0]
LangSeg is a novel semantic segmentation method that leverages context-sensitive, fine-grained subclass descriptors.<n>We evaluate LangSeg on two challenging datasets, ADE20K and COCO-Stuff, where it outperforms state-of-the-art models.
arXiv Detail & Related papers (2025-01-27T20:02:12Z) - CALICO: Part-Focused Semantic Co-Segmentation with Large Vision-Language Models [2.331828779757202]
We present CALICO, the first Large Vision-Language Models (LVLM) designed for multi-image part-level reasoning segmentation.<n> CALICO features two key components, a novel Correspondence Extraction Module that identifies semantic part-level correspondences, and Adaptation Correspondence Modules that embed this information into the LVLM.<n>We show that CALICO, with just 0.3% of its parameters finetuned, achieves strong performance on this challenging task.
arXiv Detail & Related papers (2024-12-26T18:59:37Z) - InstructSeg: Unifying Instructed Visual Segmentation with Multi-modal Large Language Models [37.43195217391341]
In this paper, we define the union of segmentation and reasoning segmentation at both the image and video levels as Instructed Visual (IVS)<n>Specifically, we employ an object-aware video perceiver to extract temporal and object information from reference frames, facilitating comprehensive video understanding.<n>By leveraging multi-task and end-to-end training, InstructSeg demonstrates superior performance across diverse image and video segmentation tasks.
arXiv Detail & Related papers (2024-12-18T16:20:40Z) - Instruction-guided Multi-Granularity Segmentation and Captioning with Large Multimodal Model [19.861556031795725]
We introduce a Multi-Granularity Large Multimodal Model (MGLMM)
MGLMM is capable of seamlessly adjusting the granularity of Captioning (SegCap) following user instructions.
It excels at tackling more than eight downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-09-20T11:13:31Z) - PSALM: Pixelwise SegmentAtion with Large Multi-Modal Model [49.80313655590392]
PSALM is a powerful extension of the Large Multi-modal Model (LMM) to address the segmentation task challenges.
It incorporates a mask decoder and a well-designed input schema to handle a variety of segmentation tasks.
The flexible design of PSALM supports joint training across multiple datasets and tasks, leading to improved performance and task generalization.
arXiv Detail & Related papers (2024-03-21T17:50:47Z) - Semantic-SAM: Segment and Recognize Anything at Any Granularity [83.64686655044765]
We introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity.
We consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts.
For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels.
arXiv Detail & Related papers (2023-07-10T17:59:40Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - AIMS: All-Inclusive Multi-Level Segmentation [93.5041381700744]
We propose a new task, All-Inclusive Multi-Level (AIMS), which segments visual regions into three levels: part, entity, and relation.
We also build a unified AIMS model through multi-dataset multi-task training to address the two major challenges of annotation inconsistency and task correlation.
arXiv Detail & Related papers (2023-05-28T16:28:49Z) - Segment Everything Everywhere All at Once [124.90835636901096]
We present SEEM, a promptable and interactive model for segmenting everything everywhere all at once in an image.
We propose a novel decoding mechanism that enables diverse prompting for all types of segmentation tasks.
We conduct a comprehensive empirical study to validate the effectiveness of SEEM across diverse segmentation tasks.
arXiv Detail & Related papers (2023-04-13T17:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.