With Limited Data for Multimodal Alignment, Let the STRUCTURE Guide You
- URL: http://arxiv.org/abs/2506.16895v1
- Date: Fri, 20 Jun 2025 10:32:54 GMT
- Title: With Limited Data for Multimodal Alignment, Let the STRUCTURE Guide You
- Authors: Fabian Gröger, Shuo Wen, Huyen Le, Maria Brbić,
- Abstract summary: Multimodal models have demonstrated powerful capabilities in complex tasks requiring alignment.<n>Existing models typically rely on paired samples, which are expensive or infeasible to obtain in many domains.<n>We introduce an effective regularization technique that preserves the latent space of unimodal encoders.
- Score: 0.19285000127136376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal models have demonstrated powerful capabilities in complex tasks requiring multimodal alignment including zero-shot classification and cross-modal retrieval. However, existing models typically rely on millions of paired multimodal samples, which are prohibitively expensive or infeasible to obtain in many domains. In this work, we explore the feasibility of building multimodal models with limited amount of paired data by aligning pretrained unimodal foundation models. We show that high-quality alignment is possible with as few as tens of thousands of paired samples$\unicode{x2013}$less than $1\%$ of the data typically used in the field. To achieve this, we introduce STRUCTURE, an effective regularization technique that preserves the neighborhood geometry of the latent space of unimodal encoders. Additionally, we show that aligning last layers is often suboptimal and demonstrate the benefits of aligning the layers with the highest representational similarity across modalities. These two components can be readily incorporated into existing alignment methods, yielding substantial gains across 24 zero-shot image classification and retrieval benchmarks, with average relative improvement of $51.6\%$ in classification and $91.8\%$ in retrieval tasks. Our results highlight the effectiveness and broad applicability of our framework for limited-sample multimodal learning and offer a promising path forward for resource-constrained domains.
Related papers
- Model alignment using inter-modal bridges [0.6906005491572401]
Existing methods require extensive paired training data or are constrained to specific domains.<n>We introduce a semi-supervised approach for model alignment via conditional flow matching.<n>Our method provides a data-efficient solution for inter-modal model alignment with minimal supervision.
arXiv Detail & Related papers (2025-05-18T09:30:02Z) - Integrating Extra Modality Helps Segmentor Find Camouflaged Objects Well [23.460400679372714]
MultiCOS is a novel framework that effectively leverages diverse data modalities to improve segmentation performance.<n>BFSer outperforms existing multimodal baselines with both real and pseudo-modal data.
arXiv Detail & Related papers (2025-02-20T11:49:50Z) - MINIMA: Modality Invariant Image Matching [52.505282811925454]
We present MINIMA, a unified image matching framework for multiple cross-modal cases.<n>We scale up the modalities from cheap but rich RGB-only matching data, by means of generative models.<n>With MD-syn, we can directly train any advanced matching pipeline on randomly selected modality pairs to obtain cross-modal ability.
arXiv Detail & Related papers (2024-12-27T02:39:50Z) - Multi-modal Retrieval Augmented Multi-modal Generation: Datasets, Evaluation Metrics and Strong Baselines [63.22096609916707]
Multi-modal Retrieval Augmented Multi-modal Generation (M$2$RAG) is a novel task that enables foundation models to process multi-modal web content.<n>Despite its potential impact, M$2$RAG remains understudied, lacking comprehensive analysis and high-quality data resources.
arXiv Detail & Related papers (2024-11-25T13:20:19Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - Toward Robust Multimodal Learning using Multimodal Foundational Models [30.755818450393637]
We propose TRML, Toward Robust Multimodal Learning using Multimodal Foundational Models.
TRML employs generated virtual modalities to replace missing modalities.
We also design a semantic matching learning module to align semantic spaces generated and missing modalities.
arXiv Detail & Related papers (2024-01-20T04:46:43Z) - Lightweight In-Context Tuning for Multimodal Unified Models [57.10831399642176]
MultiModal In-conteXt Tuning (M$2$IXT) is a lightweight module to enhance the ICL capabilities of multimodal unified models.
When tuned on as little as 50K multimodal data, M$2$IXT can boost the few-shot ICL performance significantly.
arXiv Detail & Related papers (2023-10-08T10:47:24Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - Missing Modality Robustness in Semi-Supervised Multi-Modal Semantic
Segmentation [27.23513712371972]
We propose a simple yet efficient multi-modal fusion mechanism Linear Fusion.
We also propose M3L: Multi-modal Teacher for Masked Modality Learning.
Our proposal shows an absolute improvement of up to 10% on robust mIoU above the most competitive baselines.
arXiv Detail & Related papers (2023-04-21T05:52:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.