Fidelity Relations in an Array of Neutral Atom Qubits -- Experimental Validation of Control Noise
- URL: http://arxiv.org/abs/2506.16974v1
- Date: Fri, 20 Jun 2025 13:04:08 GMT
- Title: Fidelity Relations in an Array of Neutral Atom Qubits -- Experimental Validation of Control Noise
- Authors: Deon Janse van Rensburg, Robert de Keijzer, Rogier Venderbosch, Yuri van der Werf, Jesus del Pozo Mellado, Rianne Lous, Edgar Vredenbregt, Servaas Kokkelmans,
- Abstract summary: Noise is a hindering factor for current-era quantum computers.<n>In this study, we experimentally validate the theoretical relationships between control noise and qubit state fidelity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Noise is a hindering factor for current-era quantum computers. In this study, we experimentally validate the theoretical relationships between control noise and qubit state fidelity. The experiment comprises a 10$\times$10 site optical tweezer array stochastically loaded with single rubidium-85 atoms. A global microwave field is used to manipulate the state of the hyperfine qubits. With precise control of the time-dependent amplitude of the microwave drive, we apply control signals featuring artificial noise. We systematically analyze the impact of various noise profiles on the fidelity distribution of the quantum states. The measured fidelities are compared against theoretical predictions made using the stochastic Schr{\"o}dinger equation. Our results show a good agreement between the experimentally measured and theoretically predicted results. This validation is consequential, as the model provides critical information on noise identification and optimal control protocols in NISQ-era quantum systems.
Related papers
- Correlating noise floor with magic and entanglement in Pauli product states [37.69303106863453]
We show the ability to recover resources specific to quantum computing from noisy states generated by Pauli product formulas.<n>The fidelity of purified states represents the noise floor of a given computation.<n>We experimentally validate these findings by collecting classical shadow data for a range of small circuits.
arXiv Detail & Related papers (2025-05-07T19:24:00Z) - Impact of qubit anharmonicity on near-resonant Rabi oscillations [0.0]
This study investigates the impact of anharmonicity on qubit dynamics under conditions typical for two-qubit entangling gates activated by weak near-resonant microwave drives.
arXiv Detail & Related papers (2025-01-30T17:36:38Z) - Squeezing-enhanced accurate differential sensing under large phase noise [0.0]
Atom interferometers are reaching sensitivities fundamentally constrained by quantum fluctuations.<n>Here, we theoretically investigate differential phase measurements with two atom interferometers using spin-squeezed states.<n>We identify optimal squeezed states that minimize the differential phase variance, scaling as $N-2/3$, while eliminating bias inherent in ellipse fitting methods.
arXiv Detail & Related papers (2025-01-30T10:38:45Z) - Demonstration of Robust and Efficient Quantum Property Learning with Shallow Shadows [1.366942647553326]
We propose a robust protocol for characterizing quantum states on current quantum computing platforms.<n>Our protocol correctly recovers state properties such as expectation values, fidelity, and entanglement entropy, while maintaining a lower sample complexity.<n>This combined theoretical and experimental analysis positions the robust shallow shadow protocol as a scalable, robust, and sample-efficient protocol.
arXiv Detail & Related papers (2024-02-27T21:53:32Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Compressed gate characterization for quantum devices with
time-correlated noise [0.0]
We present a general framework for quantum process tomography (QPT) in the presence of time-correlated noise.
As an application of our method, we perform a comparative theoretical and experimental analysis of silicon spin qubits.
We find good agreement between our theoretically predicted process fidelities and two qubit interleaved randomized benchmarking fidelities of 99.8% measured in recent experiments on silicon spin qubits.
arXiv Detail & Related papers (2023-07-26T18:05:49Z) - Correcting for finite statistics effects in a quantum steering experiment [33.013102271622614]
We introduce a one-sided device-independent protocol that corrects for apparent signaling effects in experimental probability distributions.<n>Our results show a significantly higher probability of violation than existing state-of-the-art inequalities.<n>This work demonstrates the power of semidefinite programming for entanglement verification and brings quantum networks closer to practical applications.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Flow of quantum correlations in noisy two-mode squeezed microwave states [0.0]
We study nonclassical correlations in propagating two-mode squeezed microwave states in the presence of noise.
We focus on two different types of correlations, namely, quantum entanglement and quantum discord.
arXiv Detail & Related papers (2022-07-13T09:59:52Z) - Noise effects on purity and quantum entanglement in terms of physical
implementability [27.426057220671336]
Quantum decoherence due to imperfect manipulation of quantum devices is a key issue in the noisy intermediate-scale quantum (NISQ) era.
Standard analyses in quantum information and quantum computation use error rates to parameterize quantum noise channels.
We propose to characterize the decoherence effect of a noise channel by the physical implementability of its inverse.
arXiv Detail & Related papers (2022-07-04T13:35:17Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Experimental limit on non-linear state-dependent terms in quantum theory [110.83289076967895]
We implement blinded measurement and data analysis with three control bit strings.
Control of systematic effects is realized by producing one of the control bit strings with a classical random-bit generator.
Our measurements find no evidence for electromagnetic quantum state-dependent non-linearity.
arXiv Detail & Related papers (2022-04-25T18:00:03Z) - Noise prediction and reduction of single electron spin by
deep-learning-enhanced feedforward control [26.13935769245144]
Noise-induced control imperfection is an important problem in applications of diamond-based nano-scale sensing.
We introduce the deep learning approach to relax this restriction by predicting the trend of noise and compensating the delay.
arXiv Detail & Related papers (2022-01-16T09:19:18Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.