Demonstration of Robust and Efficient Quantum Property Learning with Shallow Shadows
- URL: http://arxiv.org/abs/2402.17911v2
- Date: Wed, 05 Feb 2025 02:08:44 GMT
- Title: Demonstration of Robust and Efficient Quantum Property Learning with Shallow Shadows
- Authors: Hong-Ye Hu, Andi Gu, Swarnadeep Majumder, Hang Ren, Yipei Zhang, Derek S. Wang, Yi-Zhuang You, Zlatko Minev, Susanne F. Yelin, Alireza Seif,
- Abstract summary: We propose a robust protocol for characterizing quantum states on current quantum computing platforms.
Our protocol correctly recovers state properties such as expectation values, fidelity, and entanglement entropy, while maintaining a lower sample complexity.
This combined theoretical and experimental analysis positions the robust shallow shadow protocol as a scalable, robust, and sample-efficient protocol.
- Score: 1.366942647553326
- License:
- Abstract: Extracting information efficiently from quantum systems is a major component of quantum information processing tasks. Randomized measurements, or classical shadows, enable predicting many properties of arbitrary quantum states using few measurements. While random single-qubit measurements are experimentally friendly and suitable for learning low-weight Pauli observables, they perform poorly for nonlocal observables. Prepending a shallow random quantum circuit before measurements maintains this experimental friendliness, but also has favorable sample complexities for observables beyond low-weight Paulis, including high-weight Paulis and global low-rank properties such as fidelity. However, in realistic scenarios, quantum noise accumulated with each additional layer of the shallow circuit biases the results. To address these challenges, we propose the \emph{robust shallow shadows protocol}. Our protocol uses Bayesian inference to learn the experimentally relevant noise model and mitigate it in postprocessing. This mitigation introduces a bias-variance trade-off: correcting for noise-induced bias comes at the cost of a larger estimator variance. Despite this increased variance, as we demonstrate on a superconducting quantum processor, our protocol correctly recovers state properties such as expectation values, fidelity, and entanglement entropy, while maintaining a lower sample complexity compared to the random single qubit measurement scheme. We also theoretically analyze the effects of noise on sample complexity and show how the optimal choice of the shallow shadow depth varies with noise strength. This combined theoretical and experimental analysis positions the robust shallow shadow protocol as a scalable, robust, and sample-efficient protocol for characterizing quantum states on current quantum computing platforms.
Related papers
- Quantum computational advantage of noisy boson sampling with partially distinguishable photons [0.0]
We identify the level of partial distinguishability noise that upholds the classical intractability of boson sampling.
We find that boson sampling with on average $O(log N)$ number of distinguishable photons out of $N$ input photons maintains the equivalent complexity to the ideal boson sampling case.
arXiv Detail & Related papers (2025-01-23T07:37:29Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.
We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Provable bounds for noise-free expectation values computed from noisy
samples [1.3194391758295114]
We quantify the sampling overhead to extract good samples from noisy quantum computers.
We show how this allows us to use the Conditional Value at Risk of noisy samples to determine provable bounds on noise-free expectation values.
arXiv Detail & Related papers (2023-12-01T17:12:18Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing quantum computers with the protocol of quantum state matching [0.0]
The presence of noise in quantum computers hinders their effective operation.
We suggest the application of the so-called quantum state matching protocol for testing purposes.
For systematically varied inputs we find that the device with the smaller quantum volume performs better on our tests than the one with larger quantum volume.
arXiv Detail & Related papers (2022-10-18T08:25:34Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Noise thresholds for classical simulability of non-linear Boson sampling [4.812718493682455]
We introduce higher order non-linearities as a mean to enhance the computational complexity of the problem and the protocol's robustness against noise.
Our results indicate that the addition of single-mode Kerr non-linearity at the input state preparation level, while retaining a linear-optical evolution, makes the Boson sampling protocol more robust against noise.
arXiv Detail & Related papers (2022-02-24T12:17:28Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Robust shadow estimation [1.7205106391379026]
We show how to mitigate errors in the shadow estimation protocol recently proposed by Huang, Kueng, and Preskill.
By adding an experimentally friendly calibration stage to the standard shadow estimation scheme, our robust shadow estimation algorithm can obtain an unbiased estimate of the classical shadow of a quantum system.
arXiv Detail & Related papers (2020-11-19T03:46:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.