論文の概要: Are Bias Evaluation Methods Biased ?
- arxiv url: http://arxiv.org/abs/2506.17111v1
- Date: Fri, 20 Jun 2025 16:11:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 19:00:05.531106
- Title: Are Bias Evaluation Methods Biased ?
- Title(参考訳): バイアス評価手法はバイアスか?
- Authors: Lina Berrayana, Sean Rooney, Luis Garcés-Erice, Ioana Giurgiu,
- Abstract要約: 大規模言語モデルの安全性を評価するためのベンチマークの作成は、信頼できるAIコミュニティにおける重要な活動のひとつだ。
このようなベンチマークがいかに頑健であるかを、異なるアプローチを用いて、偏見を表すモデルの集合をランク付けし、全体ランキングがどの程度類似しているかを比較する。
- 参考スコア(独自算出の注目度): 3.9748528039819977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The creation of benchmarks to evaluate the safety of Large Language Models is one of the key activities within the trusted AI community. These benchmarks allow models to be compared for different aspects of safety such as toxicity, bias, harmful behavior etc. Independent benchmarks adopt different approaches with distinct data sets and evaluation methods. We investigate how robust such benchmarks are by using different approaches to rank a set of representative models for bias and compare how similar are the overall rankings. We show that different but widely used bias evaluations methods result in disparate model rankings. We conclude with recommendations for the community in the usage of such benchmarks.
- Abstract(参考訳): 大規模言語モデルの安全性を評価するためのベンチマークの作成は、信頼できるAIコミュニティにおける重要な活動のひとつだ。
これらのベンチマークでは、毒性、バイアス、有害な振る舞いなど、さまざまな安全性の側面でモデルを比較することができる。
独立したベンチマークでは、異なるデータセットと評価手法で異なるアプローチを採用する。
このようなベンチマークがいかに頑健であるかを、異なるアプローチを用いて、偏見を表すモデルの集合をランク付けし、全体ランキングがどの程度類似しているかを比較する。
異なるが広く使われているバイアス評価手法が、異なるモデルランキングをもたらすことを示す。
このようなベンチマークの使用に関して、コミュニティの推奨事項で締めくくります。
関連論文リスト
- Where is this coming from? Making groundedness count in the evaluation of Document VQA models [12.951716701565019]
一般的な評価指標は、モデルの出力のセマンティックおよびマルチモーダルな基礎性を考慮しない。
本稿では,予測の基盤性を考慮した新しい評価手法を提案する。
提案手法は,ユーザが好みに応じてスコアを設定できるようにパラメータ化されている。
論文 参考訳(メタデータ) (2025-03-24T20:14:46Z) - Rethinking Relation Extraction: Beyond Shortcuts to Generalization with a Debiased Benchmark [53.876493664396506]
ベンチマークは、機械学習アルゴリズムのパフォーマンスの評価、比較の促進、優れたソリューションの特定に不可欠である。
本稿では,関係抽出タスクにおけるエンティティバイアスの問題に対処する。
本稿では,エンティティの代替によって,エンティティ参照と関係型との擬似相関を破る不偏関係抽出ベンチマークDREBを提案する。
DREBの新たなベースラインを確立するために,データレベルとモデルトレーニングレベルを組み合わせたデバイアス手法であるMixDebiasを導入する。
論文 参考訳(メタデータ) (2025-01-02T17:01:06Z) - Backdoor-based Explainable AI Benchmark for High Fidelity Evaluation of Attribution Methods [49.62131719441252]
属性法は入力特徴の重要度を計算し、深層モデルの出力予測を説明する。
本研究はまず,属性手法の信頼性ベンチマークが満たすであろう信頼度基準の集合を同定する。
次に、望ましい忠実度基準に準拠したBackdoorベースのeXplainable AIベンチマーク(BackX)を紹介します。
論文 参考訳(メタデータ) (2024-05-02T13:48:37Z) - COBIAS: Assessing the Contextual Reliability of Bias Benchmarks for Language Models [14.594920595573038]
大規模言語モデル(LLM)は、トレーニング対象のWebデータからバイアスを受け取り、ステレオタイプや偏見を含むことが多い。
これらのバイアスを評価し緩和するための現在の手法はバイアスベンチマークデータセットに依存している。
本稿では,モデルが現れる可能性のあるさまざまなコンテキストを考慮し,モデルロバスト性を偏りのある文に評価するコンテキスト信頼性フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-22T10:46:11Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Learning Evaluation Models from Large Language Models for Sequence Generation [61.8421748792555]
本稿では,大規模言語モデルを用いた3段階評価モデルトレーニング手法を提案する。
SummEval ベンチマークによる実験結果から,CSEM は人間ラベルデータなしで評価モデルを効果的に訓練できることが示された。
論文 参考訳(メタデータ) (2023-08-08T16:41:16Z) - KPEval: Towards Fine-Grained Semantic-Based Keyphrase Evaluation [69.57018875757622]
KPEvalは、参照合意、忠実性、多様性、有用性という4つの重要な側面からなる総合的な評価フレームワークである。
KPEvalを用いて、23のキーフレーズシステムを再評価し、確立されたモデル比較結果に盲点があることを発見した。
論文 参考訳(メタデータ) (2023-03-27T17:45:38Z) - LOGAN: Local Group Bias Detection by Clustering [86.38331353310114]
コーパスレベルでバイアスを評価することは、モデルにバイアスがどのように埋め込まれているかを理解するのに十分ではない、と我々は主張する。
クラスタリングに基づく新しいバイアス検出手法であるLOGANを提案する。
毒性分類および対象分類タスクの実験は、LOGANが局所領域のバイアスを特定することを示している。
論文 参考訳(メタデータ) (2020-10-06T16:42:51Z) - On the Ambiguity of Rank-Based Evaluation of Entity Alignment or Link
Prediction Methods [27.27230441498167]
本稿では,知識グラフから情報を得る方法として,リンク予測とエンティティアライメント(Entity Alignment)の2つのファミリについて,より詳しく検討する。
特に、既存のスコアはすべて、異なるデータセット間で結果を比較するのにほとんど役に立たないことを実証する。
これは結果の解釈において様々な問題を引き起こしており、誤解を招く結論を裏付ける可能性がある。
論文 参考訳(メタデータ) (2020-02-17T12:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。