Do We Need Large VLMs for Spotting Soccer Actions?
- URL: http://arxiv.org/abs/2506.17144v1
- Date: Fri, 20 Jun 2025 16:45:54 GMT
- Title: Do We Need Large VLMs for Spotting Soccer Actions?
- Authors: Ritabrata Chakraborty, Rajatsubhra Chakraborty, Avijit Dasgupta, Sandeep Chaurasia,
- Abstract summary: We propose a shift from this video-centric approach to a text-based task, making it lightweight and scalable.<n>We posit that expert commentary contains enough information to reliably spot key actions in a match.<n>Our experiments show that this language-centric approach performs effectively in detecting critical match events.
- Score: 4.334105740533729
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional video-based tasks like soccer action spotting rely heavily on visual inputs, often requiring complex and computationally expensive models to process dense video data. In this work, we propose a shift from this video-centric approach to a text-based task, making it lightweight and scalable by utilizing Large Language Models (LLMs) instead of Vision-Language Models (VLMs). We posit that expert commentary, which provides rich, fine-grained descriptions and contextual cues such as excitement and tactical insights, contains enough information to reliably spot key actions in a match. To demonstrate this, we use the SoccerNet Echoes dataset, which provides timestamped commentary, and employ a system of three LLMs acting as judges specializing in outcome, excitement, and tactics. Each LLM evaluates sliding windows of commentary to identify actions like goals, cards, and substitutions, generating accurate timestamps for these events. Our experiments show that this language-centric approach performs effectively in detecting critical match events, providing a lightweight and training-free alternative to traditional video-based methods for action spotting.
Related papers
- Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs [56.040198387038025]
We present a novel prompt-guided visual perception framework (abbreviated as Free Video-LLM) for efficient inference of training-free video LLMs.
Our method effectively reduces the number of visual tokens while maintaining high performance across multiple video question-answering benchmarks.
arXiv Detail & Related papers (2024-10-14T12:35:12Z) - TRACE: Temporal Grounding Video LLM via Causal Event Modeling [6.596327795743185]
Video Temporal Grounding (VTG) is a crucial capability for video understanding models and plays a vital role in downstream tasks such as video browsing and editing.<n>Current video LLMs rely exclusively on natural language generation, lacking the ability to model the clear structure inherent in videos.<n>This paper introduces causal event modeling framework, which represents video LLM outputs as sequences of events, and predict the current event using previous events, video inputs, and textural instructions.<n>We propose a novel task-interleaved video LLM called TRACE to effectively implement the causal event modeling framework in practice.
arXiv Detail & Related papers (2024-10-08T02:46:30Z) - Training-free Video Temporal Grounding using Large-scale Pre-trained Models [41.71055776623368]
Video temporal grounding aims to identify video segments within untrimmed videos that are most relevant to a given natural language query.
Existing video temporal localization models rely on specific datasets for training and have high data collection costs.
We propose a Training-Free Video Temporal Grounding approach that leverages the ability of pre-trained large models.
arXiv Detail & Related papers (2024-08-29T02:25:12Z) - MLLM as Video Narrator: Mitigating Modality Imbalance in Video Moment Retrieval [53.417646562344906]
Video Moment Retrieval (VMR) aims to localize a specific temporal segment within an untrimmed long video given a natural language query.
Existing methods often suffer from inadequate training annotations, i.e., the sentence typically matches with a fraction of the prominent video content in the foreground with limited wording diversity.
This intrinsic modality imbalance leaves a considerable portion of visual information remaining unaligned with text.
In this work, we take an MLLM as a video narrator to generate plausible textual descriptions of the video, thereby mitigating the modality imbalance and boosting the temporal localization.
arXiv Detail & Related papers (2024-06-25T18:39:43Z) - Open-Vocabulary Spatio-Temporal Action Detection [59.91046192096296]
Open-vocabulary-temporal action detection (OV-STAD) is an important fine-grained video understanding task.
OV-STAD requires training a model on a limited set of base classes with box and label supervision.
To better adapt the holistic VLM for the fine-grained action detection task, we carefully fine-tune it on the localized video region-text pairs.
arXiv Detail & Related papers (2024-05-17T14:52:47Z) - Frozen Transformers in Language Models Are Effective Visual Encoder Layers [26.759544759745648]
Large language models (LLMs) are surprisingly strong encoders for purely visual tasks in the absence of language.
Our work pushes the boundaries of leveraging LLMs for computer vision tasks.
We propose the information filtering hypothesis to explain the effectiveness of pre-trained LLMs in visual encoding.
arXiv Detail & Related papers (2023-10-19T17:59:05Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoM is a fast adaptive framework that leverages Large Language Models (LLMs) to reason about videos using lightweight visual tools.
An InsOVER algorithm locates the corresponding video events based on an efficient Hungarian matching between decompositions of linguistic instructions and video events.
arXiv Detail & Related papers (2023-10-16T17:05:56Z) - Towards Active Learning for Action Spotting in Association Football
Videos [59.84375958757395]
Analyzing football videos is challenging and requires identifying subtle and diverse-temporal patterns.
Current algorithms face significant challenges when learning from limited annotated data.
We propose an active learning framework that selects the most informative video samples to be annotated next.
arXiv Detail & Related papers (2023-04-09T11:50:41Z) - Prompting Visual-Language Models for Efficient Video Understanding [28.754997650215486]
This paper presents a simple method to efficiently adapt one pre-trained visual-language model to novel tasks with minimal training.
To bridge the gap between static images and videos, temporal information is encoded with lightweight Transformers stacking on top of frame-wise visual features.
arXiv Detail & Related papers (2021-12-08T18:58:16Z) - Temporally-Aware Feature Pooling for Action Spotting in Soccer
Broadcasts [86.56462654572813]
We focus our analysis on action spotting in soccer broadcast, which consists in temporally localizing the main actions in a soccer game.
We propose a novel feature pooling method based on NetVLAD, dubbed NetVLAD++, that embeds temporally-aware knowledge.
We train and evaluate our methodology on the recent large-scale dataset SoccerNet-v2, reaching 53.4% Average-mAP for action spotting.
arXiv Detail & Related papers (2021-04-14T11:09:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.