Graph Neural Networks in Multi-Omics Cancer Research: A Structured Survey
- URL: http://arxiv.org/abs/2506.17234v1
- Date: Tue, 03 Jun 2025 07:28:02 GMT
- Title: Graph Neural Networks in Multi-Omics Cancer Research: A Structured Survey
- Authors: Payam Zohari, Mostafa Haghir Chehreghani,
- Abstract summary: Data integration for multi-omics data has emerged as a powerful strategy to unravel the biological underpinnings of cancer.<n>Recent advancements in graph neural networks (GNNs) offer an effective framework to model heterogeneous and structured omics data.
- Score: 1.0128808054306186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of data integration for multi-omics data has emerged as a powerful strategy to unravel the complex biological underpinnings of cancer. Recent advancements in graph neural networks (GNNs) offer an effective framework to model heterogeneous and structured omics data, enabling precise representation of molecular interactions and regulatory networks. This systematic review explores several recent studies that leverage GNN-based architectures in multi-omics cancer research. We classify the approaches based on their targeted omics layers, graph neural network structures, and biological tasks such as subtype classification, prognosis prediction, and biomarker discovery. The analysis reveals a growing trend toward hybrid and interpretable models, alongside increasing adoption of attention mechanisms and contrastive learning. Furthermore, we highlight the use of patient-specific graphs and knowledge-driven priors as emerging directions. This survey serves as a comprehensive resource for researchers aiming to design effective GNN-based pipelines for integrative cancer analysis, offering insights into current practices, limitations, and potential future directions.
Related papers
- Generative Models in Computational Pathology: A Comprehensive Survey on Methods, Applications, and Challenges [44.77761945679817]
Generative modeling has emerged as a promising direction in computational pathology.<n>Generative models offer capabilities such as data-efficient learning, synthetic data augmentation, and multimodal representation.<n>This review provides a comprehensive synthesis of recent progress in the field.
arXiv Detail & Related papers (2025-05-16T08:44:50Z) - Graph Kolmogorov-Arnold Networks for Multi-Cancer Classification and Biomarker Identification, An Interpretable Multi-Omics Approach [36.92842246372894]
Multi-Omics Graph Kolmogorov-Arnold Network (MOGKAN) is a deep learning framework that utilizes messenger-RNA, micro-RNA sequences, and DNA methylation samples.<n>By integrating multi-omics data with graph-based deep learning, our proposed approach demonstrates robust predictive performance and interpretability.
arXiv Detail & Related papers (2025-03-29T02:14:05Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.<n>Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.<n>It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Comparative Analysis of Multi-Omics Integration Using Advanced Graph Neural Networks for Cancer Classification [40.45049709820343]
Multi-omics data integration poses significant challenges due to the high dimensionality, data complexity, and distinct characteristics of various omics types.
This study evaluates three graph neural network architectures for multi-omics (MO) integration based on graph-convolutional networks (GCN), graph-attention networks (GAT), and graph-transformer networks (GTN)
arXiv Detail & Related papers (2024-10-05T16:17:44Z) - Analysis of Gene Regulatory Networks from Gene Expression Using Graph Neural Networks [0.4369058206183195]
This study explores the use of Graph Neural Networks (GNNs), a powerful approach for modeling graph-structured data like Gene Regulatory Networks (GRNs)
The model's adeptness in accurately predicting regulatory interactions and pinpointing key regulators is attributed to advanced attention mechanisms.
The integration of GNNs in GRN research is set to pioneer developments in personalized medicine, drug discovery, and our grasp of biological systems.
arXiv Detail & Related papers (2024-09-20T17:16:14Z) - Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
We propose Pathology-Genome Heterogeneous Graph (PGHG) that integrates whole slide images (WSI) and bulk RNA-Seq expression data with heterogeneous graph neural network for cancer survival analysis.
The PGHG consists of biological knowledge-guided representation learning network and pathology-genome heterogeneous graph.
We evaluate the model on low-grade gliomas, glioblastoma, and kidney renal papillary cell carcinoma datasets from the Cancer Genome Atlas.
arXiv Detail & Related papers (2024-04-11T09:07:40Z) - IGCN: Integrative Graph Convolution Networks for patient level insights and biomarker discovery in multi-omics integration [2.0971479389679337]
We introduce a novel integrative neural network approach for cancer molecular subtype and biomedical classification applications.
IGCN can identify which types of omics receive more emphasis for each patient to predict a certain class.
IGCN has the capability to pinpoint significant biomarkers from a range of omics data types.
arXiv Detail & Related papers (2024-01-31T05:52:11Z) - Cyclic Neural Network [46.05071312173701]
We introduce the groundbreaking Cyclic Neural Networks (Cyclic NNs)
It emulates the flexible and dynamic graph nature of biological neural systems, allowing neuron connections in any graph-like structure, including cycles.
We develop the Graph Over Multi-layer Perceptron, which is the first detailed model based on this new design paradigm.
arXiv Detail & Related papers (2024-01-11T07:31:53Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.