OAT-Rephrase: Optimization-Aware Training Data Rephrasing for Zeroth-Order LLM Fine-Tuning
- URL: http://arxiv.org/abs/2506.17264v1
- Date: Tue, 10 Jun 2025 02:53:04 GMT
- Title: OAT-Rephrase: Optimization-Aware Training Data Rephrasing for Zeroth-Order LLM Fine-Tuning
- Authors: Jikai Long, Zijian Hu, Xiaodong Yu, Jianwen Xie, Zhaozhuo Xu,
- Abstract summary: This paper introduces OAT-Rephrase, an Optimization-Aware Training data rephrasing strategy.<n>We show that OAT-Rephrase consistently improves MeZO fine-tuning performance.<n>Our findings suggest that optimization-aware rephrasing serves as a reusable and low-overhead enhancement for zeroth-order tuning regimes.
- Score: 25.76983801886268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning large language models (LLMs) using zeroth-order optimization (ZO) offers a memory-efficient alternative to gradient-based methods but suffers from slower convergence and unstable optimization due to noisy gradient estimates. This paper introduces OAT-Rephrase, an Optimization-Aware Training data rephrasing strategy that leverages an LLM to rephrase training instances based on its understanding of the ZO dynamics, specifically MeZO, derived directly from its paper. The approach incorporates a dual-stage pipeline featuring a rewriter LLM and a semantic judge, ensuring all rephrasings retain task relevance and logical consistency. Evaluations across five classification tasks and three LLM architectures demonstrate that OAT-Rephrase consistently improves MeZO fine-tuning performance, often narrowing or eliminating the gap with first-order methods. Our findings suggest that optimization-aware rephrasing serves as a reusable and low-overhead enhancement for zeroth-order tuning regimes.
Related papers
- Visualising Policy-Reward Interplay to Inform Zeroth-Order Preference Optimisation of Large Language Models [0.36326779753373206]
Zeroth-Order (ZO) optimisation uses function evaluations instead of gradients, reducing memory usage, but suffers from slow convergence in high-dimensional models.<n>We introduce ZOPrO, a novel ZO algorithm designed for Preference optimisation in Large Language Models.<n>We demonstrate that our method consistently enhances reward signals while achieving convergence times comparable to first-order methods.
arXiv Detail & Related papers (2025-03-05T12:49:48Z) - Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models [54.381650481255235]
We introduce a new tuning-free approach for self-alignment, Dynamic Rewarding with Prompt Optimization (O)
Our approach leverages a search-based optimization framework that allows LLMs to iteratively self-improve and craft the optimal alignment instructions.
Empirical evaluations on eight recent LLMs, both open and closed-sourced, demonstrate that DRPO significantly enhances alignment performance.
arXiv Detail & Related papers (2024-11-13T16:15:38Z) - Zeroth-Order Fine-Tuning of LLMs in Random Subspaces [63.10833446782114]
As language models grow in size, memory demands for backpropagation increase.<n>Zeroth-order (ZO) optimization methods offer a memory-efficient alternative.<n>In this paper, we propose Subspace Zero-order optimization to address the challenges posed by posed by high dimensionality perturbations.
arXiv Detail & Related papers (2024-10-11T17:01:43Z) - Enhancing Zeroth-order Fine-tuning for Language Models with Low-rank Structures [21.18741772731095]
Zeroth-order (ZO) algorithms offer a promising alternative by approximating gradients using finite differences of function values.
Existing ZO methods struggle to capture the low-rank gradient structure common in LLM fine-tuning, leading to suboptimal performance.
This paper proposes a low-rank ZO algorithm (LOZO) that effectively captures this structure in LLMs.
arXiv Detail & Related papers (2024-10-10T08:10:53Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
Large language models (LLMs) have achieved great success across diverse tasks, and fine-tuning is sometimes needed to further enhance generation quality.<n>To handle these challenges, a direct solution is to generate high-confidence'' data from unsupervised downstream tasks.<n>We propose a novel approach, pseudo-supervised demonstrations aligned prompt optimization (PAPO) algorithm, which jointly refines both the prompt and the overall pseudo-supervision.
arXiv Detail & Related papers (2024-10-04T03:39:28Z) - LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
We show that gradient-based and high-level LLMs can effectively collaborate a combined optimization framework.<n>In this paper, we show that these complementary to each other and can effectively collaborate a combined optimization framework.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during fine-tuning.
Unlike traditional ZO-SGD methods, our work expands the exploration to a wider array of ZO optimization techniques.
Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance.
arXiv Detail & Related papers (2024-02-18T14:08:48Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO optimization iteratively performs three major steps: gradient estimation, descent direction, and solution update.
We demonstrate promising applications of ZO optimization, such as evaluating and generating explanations from black-box deep learning models, and efficient online sensor management.
arXiv Detail & Related papers (2020-06-11T06:50:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.