A Nested Watermark for Large Language Models
- URL: http://arxiv.org/abs/2506.17308v1
- Date: Wed, 18 Jun 2025 05:49:05 GMT
- Title: A Nested Watermark for Large Language Models
- Authors: Koichi Nagatsuka, Terufumi Morishita, Yasuhiro Sogawa,
- Abstract summary: Large language models (LLMs) can be misused to generate fake news and misinformation.<n>We propose a novel nested watermarking scheme that embeds two distinct watermarks into the generated text.<n>Our method achieves high detection accuracy for both watermarks while maintaining the fluency and overall quality of the generated text.
- Score: 6.702383792532788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of large language models (LLMs) has raised concerns regarding their potential misuse, particularly in generating fake news and misinformation. To address these risks, watermarking techniques for autoregressive language models have emerged as a promising means for detecting LLM-generated text. Existing methods typically embed a watermark by increasing the probabilities of tokens within a group selected according to a single secret key. However, this approach suffers from a critical limitation: if the key is leaked, it becomes impossible to trace the text's provenance or attribute authorship. To overcome this vulnerability, we propose a novel nested watermarking scheme that embeds two distinct watermarks into the generated text using two independent keys. This design enables reliable authorship identification even in the event that one key is compromised. Experimental results demonstrate that our method achieves high detection accuracy for both watermarks while maintaining the fluency and overall quality of the generated text.
Related papers
- StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models [4.76514657698929]
StealthInk is a stealthy multi-bit watermarking scheme for large language models (LLMs)<n>It preserves the original text distribution while enabling the embedding of provenance data.<n>We derive a lower bound on the number of tokens necessary for watermark detection at a fixed equal error rate.
arXiv Detail & Related papers (2025-06-05T18:37:38Z) - Signal Watermark on Large Language Models [28.711745671275477]
We propose a watermarking method embedding a specific watermark into the text during its generation by Large Language Models (LLMs)
This technique not only ensures the watermark's invisibility to humans but also maintains the quality and grammatical integrity of model-generated text.
Our method has been empirically validated across multiple LLMs, consistently maintaining high detection accuracy.
arXiv Detail & Related papers (2024-10-09T04:49:03Z) - Duwak: Dual Watermarks in Large Language Models [49.00264962860555]
We propose, Duwak, to enhance the efficiency and quality of watermarking by embedding dual secret patterns in both token probability distribution and sampling schemes.
We evaluate Duwak extensively on Llama2, against four state-of-the-art watermarking techniques and combinations of them.
arXiv Detail & Related papers (2024-03-12T16:25:38Z) - Adaptive Text Watermark for Large Language Models [8.100123266517299]
It is challenging to generate high-quality watermarked text while maintaining strong security, robustness, and the ability to detect watermarks without prior knowledge of the prompt or model.
This paper proposes an adaptive watermarking strategy to address this problem.
arXiv Detail & Related papers (2024-01-25T03:57:12Z) - Improving the Generation Quality of Watermarked Large Language Models
via Word Importance Scoring [81.62249424226084]
Token-level watermarking inserts watermarks in the generated texts by altering the token probability distributions.
This watermarking algorithm alters the logits during generation, which can lead to a downgraded text quality.
We propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS)
arXiv Detail & Related papers (2023-11-16T08:36:00Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
Current watermark detection algorithms require the secret key used in the watermark generation process, making them susceptible to security breaches and counterfeiting during public detection.
We propose an unforgeable publicly verifiable watermark algorithm named UPV that uses two different neural networks for watermark generation and detection, instead of using the same key at both stages.
arXiv Detail & Related papers (2023-07-30T13:43:27Z) - Towards Codable Watermarking for Injecting Multi-bits Information to LLMs [86.86436777626959]
Large language models (LLMs) generate texts with increasing fluency and realism.
Existing watermarking methods are encoding-inefficient and cannot flexibly meet the diverse information encoding needs.
We propose Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry multi-bit customizable information.
arXiv Detail & Related papers (2023-07-29T14:11:15Z) - On the Reliability of Watermarks for Large Language Models [95.87476978352659]
We study the robustness of watermarked text after it is re-written by humans, paraphrased by a non-watermarked LLM, or mixed into a longer hand-written document.
We find that watermarks remain detectable even after human and machine paraphrasing.
We also consider a range of new detection schemes that are sensitive to short spans of watermarked text embedded inside a large document.
arXiv Detail & Related papers (2023-06-07T17:58:48Z) - A Watermark for Large Language Models [84.95327142027183]
We propose a watermarking framework for proprietary language models.
The watermark can be embedded with negligible impact on text quality.
It can be detected using an efficient open-source algorithm without access to the language model API or parameters.
arXiv Detail & Related papers (2023-01-24T18:52:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.