Adaptive Text Watermark for Large Language Models
- URL: http://arxiv.org/abs/2401.13927v2
- Date: Sun, 9 Jun 2024 03:52:21 GMT
- Title: Adaptive Text Watermark for Large Language Models
- Authors: Yepeng Liu, Yuheng Bu,
- Abstract summary: It is challenging to generate high-quality watermarked text while maintaining strong security, robustness, and the ability to detect watermarks without prior knowledge of the prompt or model.
This paper proposes an adaptive watermarking strategy to address this problem.
- Score: 8.100123266517299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of Large Language Models (LLMs) has led to increasing concerns about the misuse of AI-generated text, and watermarking for LLM-generated text has emerged as a potential solution. However, it is challenging to generate high-quality watermarked text while maintaining strong security, robustness, and the ability to detect watermarks without prior knowledge of the prompt or model. This paper proposes an adaptive watermarking strategy to address this problem. To improve the text quality and maintain robustness, we adaptively add watermarking to token distributions with high entropy measured using an auxiliary model and keep the low entropy token distributions untouched. For the sake of security and to further minimize the watermark's impact on text quality, instead of using a fixed green/red list generated from a random secret key, which can be vulnerable to decryption and forgery, we adaptively scale up the output logits in proportion based on the semantic embedding of previously generated text using a well designed semantic mapping model. Our experiments involving various LLMs demonstrate that our approach achieves comparable robustness performance to existing watermark methods. Additionally, the text generated by our method has perplexity comparable to that of \emph{un-watermarked} LLMs while maintaining security even under various attacks.
Related papers
- Signal Watermark on Large Language Models [28.711745671275477]
We propose a watermarking method embedding a specific watermark into the text during its generation by Large Language Models (LLMs)
This technique not only ensures the watermark's invisibility to humans but also maintains the quality and grammatical integrity of model-generated text.
Our method has been empirically validated across multiple LLMs, consistently maintaining high detection accuracy.
arXiv Detail & Related papers (2024-10-09T04:49:03Z) - Watermark Smoothing Attacks against Language Models [40.02225709485305]
We introduce smoothing attacks and show that existing watermarking methods are not robust against minor modifications of text.
Our attack reveals a fundamental limitation of a wide range of watermarking techniques.
arXiv Detail & Related papers (2024-07-19T11:04:54Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
We present a novel type of watermark, Sparse Watermark, which aims to mitigate this trade-off by applying watermarks to a small subset of generated tokens distributed across the text.
Our experimental results demonstrate that the proposed watermarking scheme achieves high detectability while generating text that outperforms previous watermarking methods in quality across various tasks.
arXiv Detail & Related papers (2024-07-17T18:52:12Z) - Large Language Model Watermark Stealing With Mixed Integer Programming [51.336009662771396]
Large Language Model (LLM) watermark shows promise in addressing copyright, monitoring AI-generated text, and preventing its misuse.
Recent research indicates that watermarking methods using numerous keys are susceptible to removal attacks.
We propose a novel green list stealing attack against the state-of-the-art LLM watermark scheme.
arXiv Detail & Related papers (2024-05-30T04:11:17Z) - Topic-Based Watermarks for LLM-Generated Text [46.71493672772134]
This paper proposes a novel topic-based watermarking algorithm for large language models (LLMs)
By using topic-specific token biases, we embed a topic-sensitive watermarking into the generated text.
We demonstrate that our proposed watermarking scheme classifies various watermarked text topics with 99.99% confidence.
arXiv Detail & Related papers (2024-04-02T17:49:40Z) - Improving the Generation Quality of Watermarked Large Language Models
via Word Importance Scoring [81.62249424226084]
Token-level watermarking inserts watermarks in the generated texts by altering the token probability distributions.
This watermarking algorithm alters the logits during generation, which can lead to a downgraded text quality.
We propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS)
arXiv Detail & Related papers (2023-11-16T08:36:00Z) - Towards Codable Watermarking for Injecting Multi-bits Information to LLMs [86.86436777626959]
Large language models (LLMs) generate texts with increasing fluency and realism.
Existing watermarking methods are encoding-inefficient and cannot flexibly meet the diverse information encoding needs.
We propose Codable Text Watermarking for LLMs (CTWL) that allows text watermarks to carry multi-bit customizable information.
arXiv Detail & Related papers (2023-07-29T14:11:15Z) - Provable Robust Watermarking for AI-Generated Text [41.5510809722375]
We propose a robust and high-quality watermark method, Unigram-Watermark.
We prove that our watermark method enjoys guaranteed generation quality, correctness in watermark detection, and is robust against text editing and paraphrasing.
arXiv Detail & Related papers (2023-06-30T07:24:32Z) - On the Reliability of Watermarks for Large Language Models [95.87476978352659]
We study the robustness of watermarked text after it is re-written by humans, paraphrased by a non-watermarked LLM, or mixed into a longer hand-written document.
We find that watermarks remain detectable even after human and machine paraphrasing.
We also consider a range of new detection schemes that are sensitive to short spans of watermarked text embedded inside a large document.
arXiv Detail & Related papers (2023-06-07T17:58:48Z) - A Watermark for Large Language Models [84.95327142027183]
We propose a watermarking framework for proprietary language models.
The watermark can be embedded with negligible impact on text quality.
It can be detected using an efficient open-source algorithm without access to the language model API or parameters.
arXiv Detail & Related papers (2023-01-24T18:52:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.