LMR-BENCH: Evaluating LLM Agent's Ability on Reproducing Language Modeling Research
- URL: http://arxiv.org/abs/2506.17335v1
- Date: Thu, 19 Jun 2025 07:04:16 GMT
- Title: LMR-BENCH: Evaluating LLM Agent's Ability on Reproducing Language Modeling Research
- Authors: Shuo Yan, Ruochen Li, Ziming Luo, Zimu Wang, Daoyang Li, Liqiang Jing, Kaiyu He, Peilin Wu, George Michalopoulos, Yue Zhang, Ziyang Zhang, Mian Zhang, Zhiyu Chen, Xinya Du,
- Abstract summary: Large language model (LLM) agents have demonstrated remarkable potential in advancing scientific discovery.<n>However, their capability in reproducing code from research papers, especially in the NLP domain, remains underexplored.<n>We present LMR-BENCH, a benchmark designed to evaluate the capability of LLM agents on code reproduction from Language Modeling Research.
- Score: 32.35279830326718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language model (LLM) agents have demonstrated remarkable potential in advancing scientific discovery. However, their capability in the fundamental yet crucial task of reproducing code from research papers, especially in the NLP domain, remains underexplored. This task includes unique complex reasoning challenges in the intellectual synthesis of abstract concepts and the comprehension of code repositories with interdependent files. Motivated by this gap, we present LMR-BENCH, a benchmark designed to systematically evaluate the capability of LLM agents on code reproduction from Language Modeling Research. It consists of 28 code reproduction tasks derived from 23 research papers published in top-tier NLP venues over the past five years, spanning nine fundamental categories. Models are provided with a research paper, a code repository containing one or more masked functions, and instructions for implementing these functions. We conduct extensive experiments in standard prompting and LLM agent settings with state-of-the-art LLMs, evaluating the accuracy of unit tests and performing LLM-based evaluation of code correctness. Experimental results reveal that even the most advanced models still exhibit persistent limitations in scientific reasoning and code synthesis, highlighting critical gaps in LLM agents' ability to autonomously reproduce scientific research
Related papers
- Can AI Validate Science? Benchmarking LLMs for Accurate Scientific Claim $\
ightarrow$ Evidence Reasoning [6.043212666944194]
We present CLAIM-BENCH, a benchmark for evaluating large language models' capabilities in scientific claim-evidence extraction and validation.<n>We show that closed-source models like GPT-4 and Claude consistently outperform open-source counterparts in precision and recall.<n> strategically designed three-pass and one-by-one prompting approaches significantly improve LLMs' abilities to accurately link dispersed evidence with claims.
arXiv Detail & Related papers (2025-06-09T21:04:39Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition [67.26124739345332]
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined.<n>We introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery.<n>We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers.
arXiv Detail & Related papers (2025-03-27T08:09:15Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [24.090719826360342]
We introduce CodeIF, the first benchmark designed to assess the abilities of Large Language Models (LLMs) to adhere to task-oriented instructions within code generation scenarios.<n>We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks.
arXiv Detail & Related papers (2025-02-26T14:19:49Z) - Truth or Mirage? Towards End-to-End Factuality Evaluation with LLM-Oasis [78.07225438556203]
We introduce LLM-Oasis, the largest resource for training end-to-end factuality evaluators.<n>It is constructed by extracting claims from Wikipedia, falsifying a subset of these claims, and generating pairs of factual and unfactual texts.<n>We then rely on human annotators to both validate the quality of our dataset and to create a gold standard test set for factuality evaluation systems.
arXiv Detail & Related papers (2024-11-29T12:21:15Z) - Probing Ranking LLMs: A Mechanistic Analysis for Information Retrieval [20.353393773305672]
We employ a probing-based analysis to examine neuron activations in ranking LLMs.<n>Our study spans a broad range of feature categories, including lexical signals, document structure, query-document interactions, and complex semantic representations.<n>Our findings offer crucial insights for developing more transparent and reliable retrieval systems.
arXiv Detail & Related papers (2024-10-24T08:20:10Z) - Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
Large language models (LLMs) generate content that can undermine trust in online discourse.<n>Current methods often focus on binary classification, failing to address the complexities of real-world scenarios like human-LLM collaboration.<n>To move beyond binary classification and address these challenges, we propose a new paradigm for detecting LLM-generated content.
arXiv Detail & Related papers (2024-10-18T08:14:10Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Prompting Large Language Models for Counterfactual Generation: An
Empirical Study [13.506528217009507]
Large language models (LLMs) have made remarkable progress in a wide range of natural language understanding and generation tasks.
We present a comprehensive evaluation framework on various types of NLU tasks, which covers all key factors in determining LLMs' capability of generating counterfactuals.
arXiv Detail & Related papers (2023-05-24T06:44:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.