Zero-Shot Cognitive Impairment Detection from Speech Using AudioLLM
- URL: http://arxiv.org/abs/2506.17351v1
- Date: Fri, 20 Jun 2025 01:28:43 GMT
- Title: Zero-Shot Cognitive Impairment Detection from Speech Using AudioLLM
- Authors: Mostafa Shahin, Beena Ahmed, Julien Epps,
- Abstract summary: Speech has gained attention as a non-invasive and easily collectible biomarker for assessing cognitive decline.<n>Traditional cognitive impairment detection methods rely on supervised models trained on acoustic and linguistic features extracted from speech.<n>We propose the first zero-shot speech-based CI detection method using the Qwen2- Audio AudioLLM, a model capable of processing both audio and text inputs.
- Score: 9.84961079811343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cognitive impairment (CI) is of growing public health concern, and early detection is vital for effective intervention. Speech has gained attention as a non-invasive and easily collectible biomarker for assessing cognitive decline. Traditional CI detection methods typically rely on supervised models trained on acoustic and linguistic features extracted from speech, which often require manual annotation and may not generalise well across datasets and languages. In this work, we propose the first zero-shot speech-based CI detection method using the Qwen2- Audio AudioLLM, a model capable of processing both audio and text inputs. By designing prompt-based instructions, we guide the model in classifying speech samples as indicative of normal cognition or cognitive impairment. We evaluate our approach on two datasets: one in English and another multilingual, spanning different cognitive assessment tasks. Our results show that the zero-shot AudioLLM approach achieves performance comparable to supervised methods and exhibits promising generalizability and consistency across languages, tasks, and datasets.
Related papers
- AudioJudge: Understanding What Works in Large Audio Model Based Speech Evaluation [55.607230723223346]
This work presents a systematic study of Large Audio Model (LAM) as a Judge, AudioJudge, investigating whether it can provide a unified evaluation framework that addresses both challenges.<n>We explore AudioJudge across audio characteristic detection tasks, including pronunciation, speaking rate, speaker identification and speech quality, and system-level human preference simulation for automated benchmarking.<n>We introduce a multi-aspect ensemble AudioJudge to enable general-purpose multi-aspect audio evaluation. This method decomposes speech assessment into specialized judges for lexical content, speech quality, and paralinguistic features, achieving up to 0.91 Spearman correlation with human preferences on
arXiv Detail & Related papers (2025-07-17T00:39:18Z) - Incorporating Linguistic Constraints from External Knowledge Source for Audio-Visual Target Speech Extraction [87.49303116989708]
We explore the potential of pre-trained speech-language models (PSLMs) and pre-trained language models (PLMs) as auxiliary knowledge sources for AV-TSE.<n>In this study, we propose incorporating the linguistic constraints from PSLMs or PLMs for the AV-TSE model as additional supervision signals.<n>Without any extra computational cost during inference, the proposed approach consistently improves speech quality and intelligibility.
arXiv Detail & Related papers (2025-06-11T14:36:26Z) - Dementia Insights: A Context-Based MultiModal Approach [0.3749861135832073]
Early detection is crucial for timely interventions that may slow disease progression.<n>Large pre-trained models (LPMs) for text and audio have shown promise in identifying cognitive impairments.<n>This study proposes a context-based multimodal method, integrating both text and audio data using the best-performing LPMs.
arXiv Detail & Related papers (2025-03-03T06:46:26Z) - Where are we in audio deepfake detection? A systematic analysis over generative and detection models [59.09338266364506]
SONAR is a synthetic AI-Audio Detection Framework and Benchmark.<n>It provides a comprehensive evaluation for distinguishing cutting-edge AI-synthesized auditory content.<n>It is the first framework to uniformly benchmark AI-audio detection across both traditional and foundation model-based detection systems.
arXiv Detail & Related papers (2024-10-06T01:03:42Z) - Cognitive Insights Across Languages: Enhancing Multimodal Interview Analysis [0.6062751776009752]
We propose a multimodal model capable of predicting Mild Cognitive Impairment and cognitive scores.
The proposed model demonstrates the ability to transcribe and differentiate between languages used in the interviews.
Our approach involves in-depth research to implement various features obtained from the proposed modalities.
arXiv Detail & Related papers (2024-06-11T17:59:31Z) - A New Benchmark of Aphasia Speech Recognition and Detection Based on
E-Branchformer and Multi-task Learning [29.916793641951507]
This paper presents a new benchmark for Aphasia speech recognition using state-of-the-art speech recognition techniques.
We introduce two multi-task learning methods based on the CTC/Attention architecture to perform both tasks simultaneously.
Our system achieves state-of-the-art speaker-level detection accuracy (97.3%), and a relative WER reduction of 11% for moderate Aphasia patients.
arXiv Detail & Related papers (2023-05-19T15:10:36Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Multilingual Alzheimer's Dementia Recognition through Spontaneous
Speech: a Signal Processing Grand Challenge [18.684024762601215]
This Signal Processing Grand Challenge (SPGC) targets a difficult automatic prediction problem of societal and medical relevance.
The Challenge has been designed to assess the extent to which predictive models built based on speech in one language (English) generalise to another language (Greek)
arXiv Detail & Related papers (2023-01-13T14:09:13Z) - Zero-Shot Cross-lingual Aphasia Detection using Automatic Speech
Recognition [3.2631198264090746]
Aphasia is a common speech and language disorder, typically caused by a brain injury or a stroke, that affects millions of people worldwide.
We propose an end-to-end pipeline using pre-trained Automatic Speech Recognition (ASR) models that share cross-lingual speech representations.
arXiv Detail & Related papers (2022-04-01T14:05:02Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
We explore the use of pre-trained language models to learn sentiment information of written texts for speech sentiment analysis.
We propose a pseudo label-based semi-supervised training strategy using a language model on an end-to-end speech sentiment approach.
arXiv Detail & Related papers (2021-06-11T20:15:21Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks.
We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way.
arXiv Detail & Related papers (2020-10-26T21:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.