Enhancing Wireless Device Identification through RF Fingerprinting: Leveraging Transient Energy Spectrum Analysis
- URL: http://arxiv.org/abs/2506.17439v1
- Date: Fri, 20 Jun 2025 19:18:30 GMT
- Title: Enhancing Wireless Device Identification through RF Fingerprinting: Leveraging Transient Energy Spectrum Analysis
- Authors: Nisar Ahmed, Gulshan Saleem, Hafiz Muhammad Shahzad Asif, Muhammad Usman Younus, Kalsoom Safdar,
- Abstract summary: We introduce a hybrid deep learning model called the CNN-Bi-GRU for learning the identification of RF devices based on their transient characteristics.<n>The proposed approach provided a 10-fold cross-validation performance with a precision of 99.33%, recall of 99.53%, F1-score of 99.43%, and classification accuracy of 99.17%.
- Score: 3.767875797012388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the rapid growth of the Internet of Things technologies and the widespread adoption of 5G wireless networks have led to an exponential increase in the number of radiation devices operating in complex electromagnetic environments. A key challenge in managing and securing these devices is accurate identification and classification. To address this challenge, specific emitter identification techniques have emerged as a promising solution that aims to provide reliable and efficient means of identifying individual radiation devices in a unified and standardized manner. This research proposes an approach that leverages transient energy spectrum analysis using the General Linear Chirplet Transform to extract features from RF devices. A dataset comprising nine RF devices is utilized, with each sample containing 900 attributes and a total of 1080 equally distributed samples across the devices. These features are then used in a classification modeling framework. To overcome the limitations of conventional machine learning methods, we introduce a hybrid deep learning model called the CNN-Bi-GRU for learning the identification of RF devices based on their transient characteristics. The proposed approach provided a 10-fold cross-validation performance with a precision of 99.33%, recall of 99.53%, F1-score of 99.43%, and classification accuracy of 99.17%. The results demonstrate the promising classification performance of the CNN-Bi-GRU approach, indicating its suitability for accurately identifying RF devices based on their transient characteristics and its potential for enhancing device identification and classification in complex wireless environments.
Related papers
- SpectrumFM: A New Paradigm for Spectrum Cognition [65.65474629224558]
We propose a spectrum foundation model, termed SpectrumFM, which provides a new paradigm for spectrum cognition.<n>An innovative spectrum encoder that exploits the convolutional neural networks is proposed to effectively capture both fine-grained local signal structures and high-level global dependencies in the spectrum data.<n>Two novel self-supervised learning tasks, namely masked reconstruction and next-slot signal prediction, are developed for pre-training SpectrumFM, enabling the model to learn rich and transferable representations.
arXiv Detail & Related papers (2025-08-02T14:40:50Z) - SpectrumFM: A Foundation Model for Intelligent Spectrum Management [99.08036558911242]
Existing intelligent spectrum management methods, typically based on small-scale models, suffer from notable limitations in recognition accuracy, convergence speed, and generalization.<n>This paper proposes a novel spectrum foundation model, termed SpectrumFM, establishing a new paradigm for spectrum management.<n>Experiments demonstrate that SpectrumFM achieves superior performance in terms of accuracy, robustness, adaptability, few-shot learning efficiency, and convergence speed.
arXiv Detail & Related papers (2025-05-02T04:06:39Z) - RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
We address the critical problem of interference rejection in radio-frequency (RF) signals using a data-driven approach that leverages deep-learning methods.<n>A primary contribution of this paper is the introduction of the RF Challenge, which is a publicly available, diverse RF signal dataset.
arXiv Detail & Related papers (2024-09-13T13:53:41Z) - DT-DDNN: A Physical Layer Security Attack Detector in 5G RF Domain for CAVs [10.215216950059874]
jamming attacks pose substantial risks to the 5G network.<n>This work presents a novel deep learning-based technique for detecting jammers in CAV networks.<n>Results show that the proposed method achieves 96.4% detection rate in extra low jamming power.
arXiv Detail & Related papers (2024-03-05T04:29:31Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - SignCRF: Scalable Channel-agnostic Data-driven Radio Authentication
System [17.391164797113134]
Radio Frequency Fingerprinting through Deep Learning (RFFDL) is a data-driven IoT authentication technique.
The proposed SignCRF is a scalable, channel-agnostic, data-driven radio authentication platform.
We demonstrate that SignCRF significantly improves the RFFDL performance by achieving as high as 5x and 8x improvement in correct authentication of WiFi and LoRa devices.
arXiv Detail & Related papers (2023-03-21T21:11:02Z) - One-shot Generative Distribution Matching for Augmented RF-based UAV Identification [0.0]
This work addresses the challenge of identifying Unmanned Aerial Vehicles (UAV) using radiofrequency (RF) fingerprinting in limited RF environments.
The complexity and variability of RF signals, influenced by environmental interference and hardware imperfections, often render traditional RF-based identification methods ineffective.
One-shot generative methods for augmenting transformed RF signals offer a significant improvement in UAV identification.
arXiv Detail & Related papers (2023-01-20T02:35:43Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Spectro-Temporal RF Identification using Deep Learning [3.8137985834223507]
WRIST is a Wideband, Real-time RF Identification system with Spectro-Temporal detection, framework and system.
Our resulting deep learning model is capable to detect, classify, and precisely locate RF emissions in time and frequency.
WRIST detector achieves 90 mean Average Precision even in extremely congested environment in the wild.
arXiv Detail & Related papers (2021-07-11T19:02:07Z) - Signal Processing and Machine Learning Techniques for Terahertz Sensing:
An Overview [89.09270073549182]
Terahertz (THz) signal generation and radiation methods are shaping the future of wireless systems.
THz-specific signal processing techniques should complement this re-surged interest in THz sensing for efficient utilization of the THz band.
We present an overview of these techniques, with an emphasis on signal pre-processing.
We also address the effectiveness of deep learning techniques by exploring their promising sensing capabilities at the THz band.
arXiv Detail & Related papers (2021-04-09T01:38:34Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - Explanation of Unintended Radiated Emission Classification via LIME [0.0]
A dataset known as Flaming Moes includes captured unintended radiated emissions from consumer electronics.
This dataset was analyzed to construct next-generation methods for device identification.
A neural network based on applying the ResNet-18 image classification architecture to the short time Fourier transforms of short segments of voltage signatures was constructed.
arXiv Detail & Related papers (2020-09-04T23:14:50Z) - Preprint: Using RF-DNA Fingerprints To Classify OFDM Transmitters Under
Rayleigh Fading Conditions [1.6058099298620423]
The Internet of Things (IoT) will consist of approximately fifty billion devices by the year 2020.
It has been estimated that almost 70% of IoT devices use no form of encryption.
Previous research has suggested the use of Specific Emitter Identification (SEI) as a means of augmenting bit-level security mechanism such as encryption.
arXiv Detail & Related papers (2020-05-06T13:53:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.