Attosecond tunneling time measurements through momentum squeezing in strong field ionization
- URL: http://arxiv.org/abs/2506.17483v1
- Date: Fri, 20 Jun 2025 21:37:13 GMT
- Title: Attosecond tunneling time measurements through momentum squeezing in strong field ionization
- Authors: Jonathan Dubois, Léonardo Rico, Camille Lévêque, Jérémie Caillat, Richard Taïeb,
- Abstract summary: Tunneling of a particle through a potential barrier is a fundamental physical process and a major thought-provoking outcome of quantum physics.<n>We show that an electron wavepacket tunneling out of an atom through the potential barrier induced by a strong electric field, carries in its momentum profile the value of the corresponding tunneling time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tunneling of a particle through a potential barrier is a fundamental physical process and a major thought-provoking outcome of quantum physics. It is at the basis of multiple scientific and technological advances and strongly influences both the structuring and the dynamics of matter at the microscopic scale. Without a classical counterpart, it defies our intuitive perception and understanding of the motion of a particle. Thus, the temporal characterization of tunneling, typically in terms of the time spent "under the barrier", referred to as tunneling time, raises several debates and questions on its interpretation and measurability. Here we show that an electron wavepacket tunneling out of an atom through the potential barrier induced by a strong electric field, carries in its momentum profile the value of the corresponding tunneling time, in a self-probing manner. In a revisited interpretation of the attoclock setup, we view a circularly polarized light pulse as a temporal prism which maps the barrier configuration, and hence the tunneling dynamics, onto different photoelectron ejection directions. From our simulations, we find that tunneling times in the infrared regime are of the order of hundreds of attoseconds, in agreement with previous theories.
Related papers
- A unified theory of tunneling times promoted by Ramsey clocks [0.0]
We study the time read off via a Ramsey sequence after the tunneling process.
We unifies definitions of tunneling delay within one approach.
We highlight that there exists no superluminal or instantaneous tunneling.
arXiv Detail & Related papers (2024-04-22T17:36:34Z) - Numerical simulations of quantum clock for measuring tunneling times [0.0]
We numerically study two methods of measuring tunneling times using a quantum clock.
In the conventional method using the Larmor clock, we show that the Larmor tunneling time can be shorter for higher tunneling barriers.
In the second method, we study the probability of a spin-flip of a particle when it is transmitted through a potential barrier.
arXiv Detail & Related papers (2022-07-26T18:18:39Z) - Interplay between optomechanics and the dynamical Casimir effect [55.41644538483948]
We develop a model of a quantum field confined within a cavity with a movable wall where the position of the wall is quantized.
We obtain a full description of the dynamics of both the quantum field and the confining wall depending on the initial state of the whole system.
arXiv Detail & Related papers (2022-04-22T14:27:30Z) - A shortcut to adiabaticity in a cavity with a moving mirror [58.720142291102135]
We describe for the first time how to implement shortcuts to adiabaticity in quantum field theory.
The shortcuts take place whenever there is no dynamical Casimir effect.
We obtain a fundamental limit for the efficiency of an Otto cycle with the quantum field as a working system.
arXiv Detail & Related papers (2022-02-01T20:40:57Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Gap-tunable of Tunneling Time in Graphene Magnetic Barrier [0.0]
We study the tunneling time of Dirac fermions in graphene magnetic barrier through an electrostatic potential and a mass term.
This latter generates an energy gap in the spectrum and therefore affects the proprieties of tunneling of the system.
arXiv Detail & Related papers (2021-03-30T18:16:39Z) - Quantum interference in strong-field ionization by a linearly polarized
laser pulse, and its relevance to tunnel exit time and momentum [0.0]
We investigate the liberation of an atomic electron by a linearly polarized single-cycle near-infrared laser pulse having a peak intensity that ensures tunneling.
Based on phase space analysis and energy distribution in the instantaneous potential, we reveal the importance of quantum interference between tunneling and over-the-barrier pathways of escape.
arXiv Detail & Related papers (2021-03-23T17:20:59Z) - Electronic decay process spectra including nuclear degrees of freedom [49.1574468325115]
We explore the ultra-rapid electronic motion spanning attoseconds to femtoseconds, demonstrating that it is equally integral and relevant to the discipline.
The advent of ultrashort attosecond pulse technology has revolutionized our ability to directly observe electronic rearrangements in atoms and molecules.
arXiv Detail & Related papers (2021-02-10T16:51:48Z) - Impact of the transverse direction on the many-body tunneling dynamics
in a two-dimensional bosonic Josephson junction [0.0]
Tunneling in a many-body system appears as one of the novel implications of quantum physics.
We theoretically describe the quantum dynamics of the tunneling phenomenon of a few intricate bosonic clouds in a closed system of a two-dimensional symmetric double-well potential.
arXiv Detail & Related papers (2020-06-06T13:51:14Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.