DRIMV_TSK: An Interpretable Surgical Evaluation Model for Incomplete Multi-View Rectal Cancer Data
- URL: http://arxiv.org/abs/2506.17552v1
- Date: Sat, 21 Jun 2025 02:38:45 GMT
- Title: DRIMV_TSK: An Interpretable Surgical Evaluation Model for Incomplete Multi-View Rectal Cancer Data
- Authors: Wei Zhang, Zi Wang, Hanwen Zhou, Zhaohong Deng, Weiping Ding, Yuxi Ge, Te Zhang, Yuanpeng Zhang, Kup-Sze Choi, Shitong Wang, Shudong Hu,
- Abstract summary: More data about rectal cancer can be collected with the development of technology.<n>With the development of artificial intelligence, its application in rectal cancer treatment is becoming possible.
- Score: 26.149387171274956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A reliable evaluation of surgical difficulty can improve the success of the treatment for rectal cancer and the current evaluation method is based on clinical data. However, more data about rectal cancer can be collected with the development of technology. Meanwhile, with the development of artificial intelligence, its application in rectal cancer treatment is becoming possible. In this paper, a multi-view rectal cancer dataset is first constructed to give a more comprehensive view of patients, including the high-resolution MRI image view, pressed-fat MRI image view, and clinical data view. Then, an interpretable incomplete multi-view surgical evaluation model is proposed, considering that it is hard to obtain extensive and complete patient data in real application scenarios. Specifically, a dual representation incomplete multi-view learning model is first proposed to extract the common information between views and specific information in each view. In this model, the missing view imputation is integrated into representation learning, and second-order similarity constraint is also introduced to improve the cooperative learning between these two parts. Then, based on the imputed multi-view data and the learned dual representation, a multi-view surgical evaluation model with the TSK fuzzy system is proposed. In the proposed model, a cooperative learning mechanism is constructed to explore the consistent information between views, and Shannon entropy is also introduced to adapt the view weight. On the MVRC dataset, we compared it with several advanced algorithms and DRIMV_TSK obtained the best results.
Related papers
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.<n>Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.<n>Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.<n>Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Enhancing Multimodal Medical Image Classification using Cross-Graph Modal Contrastive Learning [9.902648398258117]
This paper proposes a novel Cross-Graph Modal Contrastive Learning framework for multimodal structured data to improve medical image classification.<n>The proposed approach is evaluated on two datasets: a Parkinson's disease (PD) dataset and a public melanoma dataset.<n>Results demonstrate that CGMCL outperforms conventional unimodal methods in accuracy, interpretability, and early disease prediction.
arXiv Detail & Related papers (2024-10-23T01:25:25Z) - Multi-task Learning Approach for Intracranial Hemorrhage Prognosis [0.0]
We propose a 3D multi-task image model to predict prognosis, Glasgow Coma Scale and age, improving accuracy and interpretability.
Our method outperforms current state-of-the-art baseline image models, and demonstrates superior performance in ICH prognosis compared to four board-certified neuroradiologists using only CT scans as input.
arXiv Detail & Related papers (2024-08-16T14:56:17Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - C^2M-DoT: Cross-modal consistent multi-view medical report generation
with domain transfer network [67.97926983664676]
We propose a cross-modal consistent multi-view medical report generation with a domain transfer network (C2M-DoT)
C2M-DoT substantially outperforms state-of-the-art baselines in all metrics.
arXiv Detail & Related papers (2023-10-09T02:31:36Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
We propose a Competence-based Multimodal Curriculum Learning framework ( CMCL) to alleviate the data bias and make best use of available data.
Specifically, CMCL simulates the learning process of radiologists and optimize the model in a step by step manner.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that CMCL can be incorporated into existing models to improve their performance.
arXiv Detail & Related papers (2022-06-24T08:16:01Z) - Multi-View Hypercomplex Learning for Breast Cancer Screening [7.147856898682969]
Traditionally, deep learning methods for breast cancer classification perform a single-view analysis.
radiologists simultaneously analyze all four views that compose a mammography exam.
We propose a methodological approach for multi-view breast cancer classification based on parameterized hypercomplex neural networks.
arXiv Detail & Related papers (2022-04-12T13:32:31Z) - MIST GAN: Modality Imputation Using Style Transfer for MRI [0.49172272348627766]
We formulate generating the missing MR modality from existing MR modalities as an imputation problem using style transfer.
With a multiple-to-one mapping, we model a network that accommodates domain specific styles in generating the target image.
Our model is tested on the BraTS'18 dataset and the results are observed to be on par with the state-of-the-art in terms of visual metrics.
arXiv Detail & Related papers (2022-02-21T17:50:40Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.