VLA-OS: Structuring and Dissecting Planning Representations and Paradigms in Vision-Language-Action Models
- URL: http://arxiv.org/abs/2506.17561v1
- Date: Sat, 21 Jun 2025 03:07:48 GMT
- Title: VLA-OS: Structuring and Dissecting Planning Representations and Paradigms in Vision-Language-Action Models
- Authors: Chongkai Gao, Zixuan Liu, Zhenghao Chi, Junshan Huang, Xin Fei, Yiwen Hou, Yuxuan Zhang, Yudi Lin, Zhirui Fang, Zeyu Jiang, Lin Shao,
- Abstract summary: We introduce VLA-OS, a unified VLA architecture series capable of various task planning paradigms.<n>We design a comprehensive suite of experiments across diverse object categories (rigid and deformable), visual modalities (2D and 3D), environments (simulation and real-world), and end-effectors (grippers and dexterous hands)
- Score: 9.376810354990079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies on Vision-Language-Action (VLA) models have shifted from the end-to-end action-generation paradigm toward a pipeline involving task planning followed by action generation, demonstrating improved performance on various complex, long-horizon manipulation tasks. However, existing approaches vary significantly in terms of network architectures, planning paradigms, representations, and training data sources, making it challenging for researchers to identify the precise sources of performance gains and components to be further improved. To systematically investigate the impacts of different planning paradigms and representations isolating from network architectures and training data, in this paper, we introduce VLA-OS, a unified VLA architecture series capable of various task planning paradigms, and design a comprehensive suite of controlled experiments across diverse object categories (rigid and deformable), visual modalities (2D and 3D), environments (simulation and real-world), and end-effectors (grippers and dexterous hands). Our results demonstrate that: 1) visually grounded planning representations are generally better than language planning representations; 2) the Hierarchical-VLA paradigm generally achieves superior or comparable performance than other paradigms on task performance, pretraining, generalization ability, scalability, and continual learning ability, albeit at the cost of slower training and inference speeds.
Related papers
- Learning to See and Act: Task-Aware View Planning for Robotic Manipulation [85.65102094981802]
Task-Aware View Planning (TAVP) is a framework designed to integrate active view planning with task-specific representation learning.<n>Our proposed TAVP model achieves superior performance over state-of-the-art fixed-view approaches.
arXiv Detail & Related papers (2025-08-07T09:21:20Z) - Exploring Scalable Unified Modeling for General Low-Level Vision [39.89755374452788]
Low-level vision involves a wide spectrum of tasks, including image restoration, enhancement, stylization, and feature extraction.<n>To address the challenge of unified modeling across such diverse tasks, we propose a Visual task Prompt-based Image Processing framework.<n>We develop a unified low-level vision model, GenLV, and evaluate its performance across multiple representative tasks.
arXiv Detail & Related papers (2025-07-20T03:22:52Z) - Vision Language Action Models in Robotic Manipulation: A Systematic Review [1.1767330101986737]
Vision Language Action (VLA) models represent a transformative shift in robotics.<n>This review presents a comprehensive and forward-looking synthesis of the VLA paradigm.<n>We analyze 102 VLA models, 26 foundational datasets, and 12 simulation platforms.
arXiv Detail & Related papers (2025-07-14T18:00:34Z) - Vision-Language Modeling Meets Remote Sensing: Models, Datasets and Perspectives [36.297745473653166]
Vision-language modeling (VLM) aims to bridge the information gap between images and natural language.<n>Under the new paradigm of first pre-training on massive image-text pairs and then fine-tuning on task-specific data, VLM in the remote sensing domain has made significant progress.
arXiv Detail & Related papers (2025-05-20T13:47:40Z) - Vision Language Models are In-Context Value Learners [89.29486557646624]
We present Generative Value Learning (GVL), a universal value function estimator that leverages the world knowledge embedded in vision-language models (VLMs) to predict task progress.
Without any robot or task specific training, GVL can in-context zero-shot and few-shot predict effective values for more than 300 distinct real-world tasks.
arXiv Detail & Related papers (2024-11-07T09:17:50Z) - Benchmarking Vision, Language, & Action Models on Robotic Learning Tasks [20.93006455952299]
Vision-language-action (VLA) models represent a promising direction for developing general-purpose robotic systems.<n>We present a comprehensive evaluation framework and benchmark suite for assessing VLA models.
arXiv Detail & Related papers (2024-11-04T18:01:34Z) - VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use [74.39058448757645]
We present VipAct, an agent framework that enhances vision-language models (VLMs)
VipAct consists of an orchestrator agent, which manages task requirement analysis, planning, and coordination, along with specialized agents that handle specific tasks.
We evaluate VipAct on benchmarks featuring a diverse set of visual perception tasks, with experimental results demonstrating significant performance improvements.
arXiv Detail & Related papers (2024-10-21T18:10:26Z) - VSP: Assessing the dual challenges of perception and reasoning in spatial planning tasks for VLMs [102.36953558562436]
Vision language models (VLMs) are an exciting emerging class of language models (LMs)
One understudied capability inVLMs is visual spatial planning.
Our study introduces a benchmark that evaluates the spatial planning capability in these models in general.
arXiv Detail & Related papers (2024-07-02T00:24:01Z) - Modeling Output-Level Task Relatedness in Multi-Task Learning with Feedback Mechanism [7.479892725446205]
Multi-task learning (MTL) is a paradigm that simultaneously learns multiple tasks by sharing information at different levels.
We introduce a posteriori information into the model, considering that different tasks may produce correlated outputs with mutual influences.
We achieve this by incorporating a feedback mechanism into MTL models, where the output of one task serves as a hidden feature for another task.
arXiv Detail & Related papers (2024-04-01T03:27:34Z) - Visual Instruction Tuning towards General-Purpose Multimodal Model: A
Survey [59.95153883166705]
Traditional computer vision generally solves each single task independently by a dedicated model with the task instruction implicitly designed in the model architecture.
Visual Instruction Tuning (VIT) has been intensively studied recently, which finetunes a large vision model with language as task instructions.
This work aims to provide a systematic review of visual instruction tuning, covering (1) the background that presents computer vision task paradigms and the development of VIT; (2) the foundations of VIT that introduce commonly used network architectures, visual instruction tuning frameworks and objectives, and evaluation setups and tasks; and (3) the commonly used datasets in visual instruction tuning and evaluation.
arXiv Detail & Related papers (2023-12-27T14:54:37Z) - EgoPlan-Bench: Benchmarking Multimodal Large Language Models for Human-Level Planning [84.6451394629312]
We introduce EgoPlan-Bench, a benchmark to evaluate the planning abilities of MLLMs in real-world scenarios.
We show that EgoPlan-Bench poses significant challenges, highlighting a substantial scope for improvement in MLLMs to achieve human-level task planning.
We also present EgoPlan-IT, a specialized instruction-tuning dataset that effectively enhances model performance on EgoPlan-Bench.
arXiv Detail & Related papers (2023-12-11T03:35:58Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
Continual learning aims to train a model incrementally on a sequence of tasks without forgetting previous knowledge.
We present a detailed study of how different settings affect performance for Visual Question Answering.
arXiv Detail & Related papers (2022-09-30T19:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.