LLM-Prompt: Integrated Heterogeneous Prompts for Unlocking LLMs in Time Series Forecasting
- URL: http://arxiv.org/abs/2506.17631v1
- Date: Sat, 21 Jun 2025 08:22:25 GMT
- Title: LLM-Prompt: Integrated Heterogeneous Prompts for Unlocking LLMs in Time Series Forecasting
- Authors: Zesen Wang, Yonggang Li, Lijuan Lan,
- Abstract summary: Time series forecasting aims to model temporal dependencies among variables for future state inference.<n>Recent research demonstrates that large language models (LLMs) achieve promising performance in time series forecasting.<n>We propose LLM-Prompt, an LLM-based time series forecasting framework integrating multi-prompt information and cross-modal semantic alignment.
- Score: 4.881217428928315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting aims to model temporal dependencies among variables for future state inference, holding significant importance and widespread applications in real-world scenarios. Although deep learning-based methods have achieved remarkable progress, they still exhibit suboptimal performance in long-term forecasting and data-scarce scenarios. Recent research demonstrates that large language models (LLMs) achieve promising performance in time series forecasting. However, we find existing LLM-based methods still have shortcomings: (1) the absence of a unified paradigm for textual prompt formulation and (2) the neglect of modality discrepancies between textual prompts and time series. To address this, we propose LLM-Prompt, an LLM-based time series forecasting framework integrating multi-prompt information and cross-modal semantic alignment. Specifically, we first construct a unified textual prompt paradigm containing learnable soft prompts and textualized hard prompts. Second, to enhance LLMs' comprehensive understanding of the forecasting task, we design a semantic space embedding and cross-modal alignment module to achieve cross-modal fusion of temporal and textual information. Finally, the transformed time series from the LLMs are projected to obtain the forecasts. Comprehensive evaluations on 6 public datasets and 3 carbon emission datasets demonstrate that LLM-Prompt is a powerful framework for time series forecasting.
Related papers
- Forecasting Time Series with LLMs via Patch-Based Prompting and Decomposition [48.50019311384125]
We explore simple and flexible prompt-based strategies that enable LLMs to perform time series forecasting without extensive retraining.<n>We propose our own method, PatchInstruct, which enables LLMs to make precise and effective predictions.
arXiv Detail & Related papers (2025-06-15T19:42:58Z) - LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.<n>Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.<n>We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - Explainable Multi-modal Time Series Prediction with LLM-in-the-Loop [63.34626300024294]
TimeXL is a multi-modal prediction framework that integrates a prototype-based time series encoder.<n>It produces more accurate predictions and interpretable explanations.<n> Empirical evaluations on four real-world datasets demonstrate that TimeXL achieves up to 8.9% improvement in AUC.
arXiv Detail & Related papers (2025-03-02T20:40:53Z) - Context information can be more important than reasoning for time series forecasting with a large language model [0.0]
We explore the characteristics of large language models (LLMs) for time series forecasting.<n>Findings indicate that no single prompting method is universally applicable.<n>LLMs often fail to follow the procedures described by the prompt.
arXiv Detail & Related papers (2025-02-08T21:39:07Z) - Rethinking Time Series Forecasting with LLMs via Nearest Neighbor Contrastive Learning [1.7892194562398749]
We propose NNCL-TLLM: Nearest Neighbor Contrastive Learning for Time series forecasting via Large Language Models.<n>First, we generate time series compatible text prototypes such that each text prototype represents both word token embeddings in its neighborhood and time series characteristics.<n>We then fine-tune the layer normalization and positional embeddings of the LLM, keeping the other layers intact, reducing the trainable parameters and decreasing the computational cost.
arXiv Detail & Related papers (2024-12-06T06:32:47Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.<n>We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.<n>We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning [59.88924847995279]
We propose a novel Cross-Modal LLM Fine-Tuning (CALF) framework for MTSF.<n>To reduce the distribution discrepancy, we develop the cross-modal match module.<n>CALF establishes state-of-the-art performance for both long-term and short-term forecasting tasks.
arXiv Detail & Related papers (2024-03-12T04:04:38Z) - Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities [46.02234423159257]
Large language models (LLMs) have been applied in many fields and have developed rapidly in recent years.<n>Recent works treat large language models as emphzero-shot time series reasoners without further fine-tuning.<n>Our study shows that LLMs perform well in predicting time series with clear patterns and trends, but face challenges with datasets lacking periodicity.
arXiv Detail & Related papers (2024-02-16T17:15:28Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimes projects time series into the embedding space of language tokens and autoregressively generates future predictions with arbitrary lengths.
We formulate time series as prompts, extending the context for prediction beyond the lookback window.
AutoTimes achieves state-of-the-art with 0.1% trainable parameters and over $5times$ training/inference speedup.
arXiv Detail & Related papers (2024-02-04T06:59:21Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.