TPTT: Transforming Pretrained Transformer into Titans
- URL: http://arxiv.org/abs/2506.17671v1
- Date: Sat, 21 Jun 2025 10:06:07 GMT
- Title: TPTT: Transforming Pretrained Transformer into Titans
- Authors: Fabien Furfaro,
- Abstract summary: TPTT (Transforming Pretrained Transformer into Titans) is a novel framework for enhancing pretrained Transformer models.<n>It employs techniques such as Memory as Gate (MaG) and mixed linearized attention (LiZA)<n>We show the effectiveness of TPTT on the MMLU benchmark with models of approximately 1 billion parameters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in large language models (LLMs) have led to remarkable progress in natural language processing, but their computational and memory demands remain a significant challenge, particularly for long-context inference. We introduce TPTT (Transforming Pretrained Transformer into Titans), a novel framework for enhancing pretrained Transformer models with efficient linearized attention mechanisms and advanced memory management. TPTT employs techniques such as Memory as Gate (MaG) and mixed linearized attention (LiZA). It is fully compatible with the Hugging Face Transformers library, enabling seamless adaptation of any causal LLM through parameter-efficient fine-tuning (LoRA) without full retraining. We show the effectiveness of TPTT on the MMLU benchmark with models of approximately 1 billion parameters, observing substantial improvements in both efficiency and accuracy. For instance, Titans-Llama-3.2-1B achieves a 20% increase in Exact Match (EM) over its baseline. Statistical analyses and comparisons with recent state-of-the-art methods confirm the practical scalability and robustness of TPTT. Code is available at https://github.com/fabienfrfr/tptt . Python package at https://pypi.org/project/tptt/ .
Related papers
- Densely Connected Parameter-Efficient Tuning for Referring Image Segmentation [30.912818564963512]
DETRIS is a parameter-efficient tuning framework designed to enhance low-rank visual feature propagation.<n>Our simple yet efficient approach greatly surpasses state-of-the-art methods with 0.9% to 1.8% backbone parameter updates.
arXiv Detail & Related papers (2025-01-15T05:00:03Z) - Byte Latent Transformer: Patches Scale Better Than Tokens [101.10994909832063]
Byte Latent Transformer (BLT) encodes bytes into dynamically sized patches, which serve as the primary units of computation.<n>For fixed inference costs, BLT shows significantly better scaling than tokenization-based models, by simultaneously growing both patch and model size.
arXiv Detail & Related papers (2024-12-13T05:33:32Z) - MoEUT: Mixture-of-Experts Universal Transformers [75.96744719516813]
Universal Transformers (UTs) have advantages over standard Transformers in learning compositional generalizations.
Layer-sharing drastically reduces the parameter count compared to the non-shared model with the same dimensionality.
No previous work has succeeded in proposing a shared-layer Transformer design that is competitive in parameter count-dominated tasks such as language modeling.
arXiv Detail & Related papers (2024-05-25T03:24:32Z) - From PEFT to DEFT: Parameter Efficient Finetuning for Reducing Activation Density in Transformers [52.199303258423306]
We propose a novel density loss that encourages higher activation sparsity in pre-trained models.
Our proposed method, textbfDEFT, can consistently reduce activation density by up to textbf44.94% on RoBERTa$_mathrmLarge$ and by textbf53.19% (encoder density) and textbf90.60% (decoder density) on Flan-T5$_mathrmXXL$.
arXiv Detail & Related papers (2024-02-02T21:25:46Z) - Memory-efficient Stochastic methods for Memory-based Transformers [3.360916255196531]
Memory-based transformers can require a large amount of memory and can be quite inefficient.
We propose a novel two-phase training mechanism and a novel regularization technique to improve the training efficiency of memory-based transformers.
arXiv Detail & Related papers (2023-11-14T12:37:25Z) - DePT: Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning [14.975436239088312]
We propose DePT, which decomposes the soft prompt into a shorter soft prompt and a pair of low-rank matrices that are then optimised with two different learning rates.
We demonstrate that DePT outperforms state-of-the-art PEFT approaches, including the full fine-tuning baseline, in some scenarios.
arXiv Detail & Related papers (2023-09-11T00:02:05Z) - UniPT: Universal Parallel Tuning for Transfer Learning with Efficient
Parameter and Memory [69.33445217944029]
PETL is an effective strategy for adapting pre-trained models to downstream domains.
Recent PETL works focus on the more valuable memory-efficient characteristic.
We propose a new memory-efficient PETL strategy, Universal Parallel Tuning (UniPT)
arXiv Detail & Related papers (2023-08-28T05:38:43Z) - Efficient GPT Model Pre-training using Tensor Train Matrix
Representation [65.96485282393361]
Large-scale transformer models feature billions of parameters, leading to difficulties in their deployment and prohibitive training costs from scratch.
To reduce the number of parameters in the GPT-2 architecture, we replace the matrices of fully-connected layers with the corresponding Train Matrix(TTM) structure.
The resulting GPT-based model stores up to 40% fewer parameters, showing the perplexity comparable to the original model.
arXiv Detail & Related papers (2023-06-05T08:38:25Z) - Mnemosyne: Learning to Train Transformers with Transformers [18.36543176998175]
We show that Mnemosyne can successfully train Transformers while using simple meta-training strategies that require minimal computational resources.
Mnemosyne provides space comparable complexity to that its hand-designed first-order counterparts, which allows it to scale to training larger sets of parameters.
arXiv Detail & Related papers (2023-02-02T14:40:28Z) - Efficient Language Modeling with Sparse all-MLP [53.81435968051093]
All-MLPs can match Transformers in language modeling, but still lag behind in downstream tasks.
We propose sparse all-MLPs with mixture-of-experts (MoEs) in both feature and input (tokens)
We evaluate its zero-shot in-context learning performance on six downstream tasks, and find that it surpasses Transformer-based MoEs and dense Transformers.
arXiv Detail & Related papers (2022-03-14T04:32:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.