CSDN: A Context-Gated Self-Adaptive Detection Network for Real-Time Object Detection
- URL: http://arxiv.org/abs/2506.17679v2
- Date: Fri, 01 Aug 2025 23:32:21 GMT
- Title: CSDN: A Context-Gated Self-Adaptive Detection Network for Real-Time Object Detection
- Authors: Haolin Wei,
- Abstract summary: We introduce a Transformer-based detection header inspired by human visual perception.<n>This mechanism enables each region of interest to adaptively select and combine feature dimensions and scale information from different patterns.<n>Our proposed detection head can directly replace the native heads of various CNN-based detectors.
- Score: 0.1813006808606333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNNs) have long been the cornerstone of target detection, but they are often limited by limited receptive fields, which hinders their ability to capture global contextual information. We re-examined the DETR-inspired detection head and found substantial redundancy in its self-attention module. To solve these problems, we introduced the Context-Gated Scale-Adaptive Detection Network (CSDN), a Transformer-based detection header inspired by human visual perception: when observing an object, we always concentrate on one site, perceive the surrounding environment, and glance around the object. This mechanism enables each region of interest (ROI) to adaptively select and combine feature dimensions and scale information from different patterns. CSDN provides more powerful global context modeling capabilities and can better adapt to objects of different sizes and structures. Our proposed detection head can directly replace the native heads of various CNN-based detectors, and only a few rounds of fine-tuning on the pre-trained weights can significantly improve the detection accuracy.
Related papers
- Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.<n>Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.<n>We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - NIDS Neural Networks Using Sliding Time Window Data Processing with Trainable Activations and its Generalization Capability [0.0]
This paper presents neural networks for network intrusion detection systems (NIDS) that operate on flow data preprocessed with a time window.
It requires only eleven features which do not rely on deep packet inspection and can be found in most NIDS datasets and easily obtained from conventional flow collectors.
The reported training accuracy exceeds 99% for the proposed method with as little as twenty neural network input features.
arXiv Detail & Related papers (2024-10-24T11:36:19Z) - ChangeBind: A Hybrid Change Encoder for Remote Sensing Change Detection [16.62779899494721]
Change detection (CD) is a fundamental task in remote sensing (RS) which aims to detect the semantic changes between the same geographical regions at different time stamps.
We propose an effective Siamese-based framework to encode the semantic changes occurring in the bi-temporal RS images.
arXiv Detail & Related papers (2024-04-26T17:47:14Z) - Change Guiding Network: Incorporating Change Prior to Guide Change Detection in Remote Sensing Imagery [6.5026098921977145]
We design the Change Guiding Network (CGNet) to tackle the insufficient expression problem of change features.
CGNet generates change maps with rich semantic information to guide multi-scale feature fusion.
A self-attention module named Change Guide Module (CGM) can effectively capture the long-distance dependency among pixels.
arXiv Detail & Related papers (2024-04-14T08:09:33Z) - ELA: Efficient Local Attention for Deep Convolutional Neural Networks [15.976475674061287]
This paper introduces an Efficient Local Attention (ELA) method that achieves substantial performance improvements with a simple structure.
To overcome these challenges, we propose the incorporation of 1D convolution and Group Normalization feature enhancement techniques.
ELA can be seamlessly integrated into deep CNN networks such as ResNet, MobileNet, and DeepLab.
arXiv Detail & Related papers (2024-03-02T08:06:18Z) - Point-aware Interaction and CNN-induced Refinement Network for RGB-D Salient Object Detection [95.84616822805664]
We introduce CNNs-assisted Transformer architecture and propose a novel RGB-D SOD network with Point-aware Interaction and CNN-induced Refinement.<n>In order to alleviate the block effect and detail destruction problems brought by the Transformer naturally, we design a CNN-induced refinement (CNNR) unit for content refinement and supplementation.
arXiv Detail & Related papers (2023-08-17T11:57:49Z) - Dsfer-Net: A Deep Supervision and Feature Retrieval Network for Bitemporal Change Detection Using Modern Hopfield Networks [35.415260892693745]
We propose a Deep Supervision and FEature Retrieval network (Dsfer-Net) for bitemporal change detection.
Specifically, the highly representative deep features of bitemporal images are jointly extracted through a fully convolutional Siamese network.
Our end-to-end network establishes a novel framework by aggregating retrieved features and feature pairs from different layers.
arXiv Detail & Related papers (2023-04-03T16:01:03Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - Finding Facial Forgery Artifacts with Parts-Based Detectors [73.08584805913813]
We design a series of forgery detection systems that each focus on one individual part of the face.
We use these detectors to perform detailed empirical analysis on the FaceForensics++, Celeb-DF, and Facebook Deepfake Detection Challenge datasets.
arXiv Detail & Related papers (2021-09-21T16:18:45Z) - CPFN: Cascaded Primitive Fitting Networks for High-Resolution Point
Clouds [51.47100091540298]
We present Cascaded Primitive Fitting Networks (CPFN) that relies on an adaptive patch sampling network to assemble detection results of global and local primitive detection networks.
CPFN improves the state-of-the-art SPFN performance by 13-14% on high-resolution point cloud datasets and specifically improves the detection of fine-scale primitives by 20-22%.
arXiv Detail & Related papers (2021-08-31T23:27:33Z) - AdaCon: Adaptive Context-Aware Object Detection for Resource-Constrained
Embedded Devices [2.5345835184316536]
Convolutional Neural Networks achieve state-of-the-art accuracy in object detection tasks.
They have large computational and energy requirements that challenge their deployment on resource-constrained edge devices.
In this paper, we leverage the prior knowledge about the probabilities that different object categories can occur jointly to increase the efficiency of object detection models.
Our experiments using COCO dataset show that our adaptive object detection model achieves up to 45% reduction in the energy consumption, and up to 27% reduction in the latency, with a small loss in the average precision (AP) of object detection.
arXiv Detail & Related papers (2021-08-16T01:21:55Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
We study the effectiveness of auxiliary self-supervised tasks to improve the out-of-distribution generalization of object detectors.
Inspired by the principle of maximum entropy, we introduce a novel self-supervised task, instance-level temporal cycle confusion (CycConf)
For each object, the task is to find the most different object proposals in the adjacent frame in a video and then cycle back to itself for self-supervision.
arXiv Detail & Related papers (2021-04-16T21:35:08Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
Current state-of-the-art visual recognition systems rely on pretraining a neural network on a large-scale dataset and finetuning the network weights on a smaller dataset.
In this work, we prove that dynamically adapting network architectures tailored for each domain task along with weight finetuning benefits in both efficiency and effectiveness.
Our method can be easily generalized to an unsupervised paradigm by replacing supernet training with self-supervised learning in the source domain tasks and performing linear evaluation in the downstream tasks.
arXiv Detail & Related papers (2021-03-31T08:15:17Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.