AdaCon: Adaptive Context-Aware Object Detection for Resource-Constrained
Embedded Devices
- URL: http://arxiv.org/abs/2108.06850v1
- Date: Mon, 16 Aug 2021 01:21:55 GMT
- Title: AdaCon: Adaptive Context-Aware Object Detection for Resource-Constrained
Embedded Devices
- Authors: Marina Neseem and Sherief Reda
- Abstract summary: Convolutional Neural Networks achieve state-of-the-art accuracy in object detection tasks.
They have large computational and energy requirements that challenge their deployment on resource-constrained edge devices.
In this paper, we leverage the prior knowledge about the probabilities that different object categories can occur jointly to increase the efficiency of object detection models.
Our experiments using COCO dataset show that our adaptive object detection model achieves up to 45% reduction in the energy consumption, and up to 27% reduction in the latency, with a small loss in the average precision (AP) of object detection.
- Score: 2.5345835184316536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks achieve state-of-the-art accuracy in object
detection tasks. However, they have large computational and energy requirements
that challenge their deployment on resource-constrained edge devices. Object
detection takes an image as an input, and identifies the existing object
classes as well as their locations in the image. In this paper, we leverage the
prior knowledge about the probabilities that different object categories can
occur jointly to increase the efficiency of object detection models. In
particular, our technique clusters the object categories based on their spatial
co-occurrence probability. We use those clusters to design an adaptive network.
During runtime, a branch controller decides which part(s) of the network to
execute based on the spatial context of the input frame. Our experiments using
COCO dataset show that our adaptive object detection model achieves up to 45%
reduction in the energy consumption, and up to 27% reduction in the latency,
with a small loss in the average precision (AP) of object detection.
Related papers
- Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Multi-Objective Evolutionary for Object Detection Mobile Architectures
Search [21.14296703753317]
We propose a mobile object detection backbone network architecture search algorithm based on non-dominated sorting for NAS scenarios.
The proposed approach can search the backbone networks with different depths, widths, or expansion sizes via a technique of weight mapping.
Under similar computational complexity, the accuracy of the backbone network architecture we search for is 2.0% mAP higher than MobileDet.
arXiv Detail & Related papers (2022-11-05T00:28:49Z) - Object Detection in Aerial Images with Uncertainty-Aware Graph Network [61.02591506040606]
We propose a novel uncertainty-aware object detection framework with a structured-graph, where nodes and edges are denoted by objects.
We refer to our model as Uncertainty-Aware Graph network for object DETection (UAGDet)
arXiv Detail & Related papers (2022-08-23T07:29:03Z) - Knowledge Distillation for Oriented Object Detection on Aerial Images [1.827510863075184]
We present a model compression method for rotated object detection on aerial images by knowledge distillation, namely KD-RNet.
The experimental result on a large-scale aerial object detection dataset (DOTA) demonstrates that the proposed KD-RNet model can achieve improved mean-average precision (mAP) with reduced number of parameters, at the same time, KD-RNet boost the performance on providing high quality detections with higher overlap with groundtruth annotations.
arXiv Detail & Related papers (2022-06-20T14:24:16Z) - Decoupled Adaptation for Cross-Domain Object Detection [69.5852335091519]
Cross-domain object detection is more challenging than object classification.
D-adapt achieves a state-of-the-art results on four cross-domain object detection tasks.
arXiv Detail & Related papers (2021-10-06T08:43:59Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-net is a new low-computation two-stage object detection architecture.
It reduces computations by separating objects from background using a very lite first-stage.
Resulting image proposals are then processed in the second-stage by a highly accurate model.
arXiv Detail & Related papers (2021-07-21T12:39:51Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - Online Monitoring of Object Detection Performance During Deployment [6.166295570030645]
We introduce a cascaded neural network that monitors the performance of the object detector by predicting the quality of its mean average precision (mAP) on a sliding window of the input frames.
We evaluate our proposed approach using different combinations of autonomous driving datasets and object detectors.
arXiv Detail & Related papers (2020-11-16T07:01:43Z) - Few-shot Object Detection with Self-adaptive Attention Network for
Remote Sensing Images [11.938537194408669]
We propose a few-shot object detector which is designed for detecting novel objects provided with only a few examples.
In order to fit the object detection settings, our proposed few-shot detector concentrates on the relations that lie in the level of objects instead of the full image.
The experiments demonstrate the effectiveness of the proposed method in few-shot scenes.
arXiv Detail & Related papers (2020-09-26T13:44:58Z) - Detective: An Attentive Recurrent Model for Sparse Object Detection [25.5804429439316]
Detective is an attentive object detector that identifies objects in images in a sequential manner.
Detective is a sparse object detector that generates a single bounding box per object instance.
We propose a training mechanism based on the Hungarian algorithm and a loss that balances the localization and classification tasks.
arXiv Detail & Related papers (2020-04-25T17:41:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.