論文の概要: PDC-Net: Pattern Divide-and-Conquer Network for Pelvic Radiation Injury Segmentation
- arxiv url: http://arxiv.org/abs/2506.17712v1
- Date: Sat, 21 Jun 2025 13:25:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.554552
- Title: PDC-Net: Pattern Divide-and-Conquer Network for Pelvic Radiation Injury Segmentation
- Title(参考訳): PDC-Net: 骨盤放射線損傷分離のためのパターン分割とコンカレントネットワーク
- Authors: Xinyu Xiong, Wuteng Cao, Zihuang Wu, Lei Zhang, Chong Gao, Guanbin Li, Qiyuan Qin,
- Abstract要約: PRIセグメンテーションのためのPattern Divide-and-Conquer Network (PDC-Net)を提案する。
コアとなる考え方は、さまざまなネットワークモジュールを使用して、さまざまなローカルパターンとグローバルパターンを“分割”することだ。
骨盤内放射線損傷の最初の大規模データセットについて検討した。
- 参考スコア(独自算出の注目度): 42.073820114256826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of Pelvic Radiation Injury (PRI) from Magnetic Resonance Images (MRI) is crucial for more precise prognosis assessment and the development of personalized treatment plans. However, automated segmentation remains challenging due to factors such as complex organ morphologies and confusing context. To address these challenges, we propose a novel Pattern Divide-and-Conquer Network (PDC-Net) for PRI segmentation. The core idea is to use different network modules to "divide" various local and global patterns and, through flexible feature selection, to "conquer" the Regions of Interest (ROI) during the decoding phase. Specifically, considering that our ROI often manifests as strip-like or circular-like structures in MR slices, we introduce a Multi-Direction Aggregation (MDA) module. This module enhances the model's ability to fit the shape of the organ by applying strip convolutions in four distinct directions. Additionally, to mitigate the challenge of confusing context, we propose a Memory-Guided Context (MGC) module. This module explicitly maintains a memory parameter to track cross-image patterns at the dataset level, thereby enhancing the distinction between global patterns associated with the positive and negative classes. Finally, we design an Adaptive Fusion Decoder (AFD) that dynamically selects features from different patterns based on the Mixture-of-Experts (MoE) framework, ultimately generating the final segmentation results. We evaluate our method on the first large-scale pelvic radiation injury dataset, and the results demonstrate the superiority of our PDC-Net over existing approaches.
- Abstract(参考訳): 磁気共鳴画像(MRI)からの骨盤内放射線損傷(PRI)の正確なセグメンテーションは、より正確な予後評価とパーソナライズされた治療計画の開発に不可欠である。
しかし、複雑な臓器形態や混乱した文脈などの要因により、自動セグメンテーションは依然として困難である。
これらの課題に対処するため、PRIセグメンテーションのための新しいパターン分割型ネットワーク(PDC-Net)を提案する。
コアとなる考え方は、さまざまなローカルなパターンとグローバルなパターンを"分割"し、フレキシブルな特徴選択を通じて、デコーディングフェーズ中に関心領域(ROI)を"コンカレント"する、というものだ。
具体的には、MRスライスにおいて、私たちのROIがストリップ状または円状の構造として現れることを考えると、MDA(Multi-Direction Aggregation)モジュールを導入します。
このモジュールは、ストリップ畳み込みを4つの異なる方向に印加することで、モデルが臓器の形状に適合する能力を高める。
さらに、混乱するコンテキストの問題を緩和するために、メモリガイドコンテキスト(MGC)モジュールを提案する。
このモジュールは、データセットレベルでのクロスイメージパターンを追跡するためのメモリパラメータを明示的に保持する。
最後に、Mixture-of-Experts (MoE) フレームワークに基づいて異なるパターンから特徴を動的に選択し、最終的なセグメンテーション結果を生成するアダプティブフュージョンデコーダ(AFD)を設計する。
骨盤内放射線損傷の最初の大規模データセットについて検討し,既存のアプローチよりもPDC-Netの方が優れていることを示す。
関連論文リスト
- An Arbitrary-Modal Fusion Network for Volumetric Cranial Nerves Tract Segmentation [21.228897192093573]
そこで我々は,CNTSeg-v2と呼ばれる,体積性頭蓋神経(CNs)の領域分割のための新しい任意モード核融合ネットワークを提案する。
我々のモデルは、他の補助モーダルから情報的特徴を効果的に抽出するために設計されたArbitrary-Modal Collaboration Module (ACM)を含んでいる。
我々のCNTSeg-v2は最先端のセグメンテーション性能を達成し、競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2025-05-05T06:00:41Z) - Multi-encoder nnU-Net outperforms Transformer models with self-supervised pretraining [0.0]
本研究は, 医用画像の解剖学的構造と病理的領域の自動同定と記述を含む, 医用画像セグメンテーションの課題に対処するものである。
本稿では,複数のMRIモダリティを別個のエンコーダで独立に処理するために設計された,自己教師型学習用マルチエンコーダnnU-Netアーキテクチャを提案する。
我々のマルチエンコーダnnU-Netは、Vanilla nnU-Net、SegResNet、Swin UNETRといった他のモデルを上回る93.72%のDice similarity Coefficient(DSC)を達成し、例外的な性能を示す。
論文 参考訳(メタデータ) (2025-04-04T14:31:06Z) - A Multimodal Feature Distillation with CNN-Transformer Network for Brain Tumor Segmentation with Incomplete Modalities [15.841483814265592]
本稿では,CNN-Transformer Hybrid Network (MCTSeg) を用いたマルチモーダル特徴蒸留法を提案する。
CNN-Transformer ネットワークと Transformer の畳み込みブロックを併用して提案するモジュールの重要性について検討した。
論文 参考訳(メタデータ) (2024-04-22T09:33:44Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - Reconstruction-driven Dynamic Refinement based Unsupervised Domain
Adaptation for Joint Optic Disc and Cup Segmentation [25.750583118977833]
緑内障は可逆性失明の主要な原因の1つである。
OD/OCセグメンテーションモデルをトレーニングすることは依然として難しい。
本稿ではリコンストラクション駆動動的リファインメントネットワーク(RDR-Net)と呼ばれる新しい非教師なし領域適応(UDA)手法を提案する。
論文 参考訳(メタデータ) (2023-04-10T13:33:13Z) - Adaptive Context Selection for Polyp Segmentation [99.9959901908053]
本稿では,ローカルコンテキストアテンション(LCA)モジュール,グローバルコンテキストモジュール(GCM)モジュール,適応選択モジュール(ASM)モジュールで構成される適応コンテキスト選択に基づくエンコーダデコーダフレームワークを提案する。
LCAモジュールは、エンコーダ層からデコーダ層へローカルなコンテキスト機能を提供する。
GCMは、グローバルなコンテキストの特徴をさらに探求し、デコーダ層に送信することを目的としている。ASMは、チャンネルワイドアテンションを通じて、コンテキスト特徴の適応的選択と集約に使用される。
論文 参考訳(メタデータ) (2023-01-12T04:06:44Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
本稿では,トランスフォーマーに基づく動的オンデマンドネットワーク(TransDoDNet)を提案する。
動的ヘッドにより、ネットワークは複数のセグメンテーションタスクを柔軟に達成することができる。
我々はMOTSと呼ばれる大規模にラベル付けされたMulti-Organ and tumorベンチマークを作成し、他の競合相手よりもTransDoDNetの方が優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-13T13:03:09Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - One Network to Solve Them All: A Sequential Multi-Task Joint Learning
Network Framework for MR Imaging Pipeline [12.684219884940056]
組み合わせたエンドツーエンドのパイプラインを訓練するために、連続的なマルチタスク共同学習ネットワークモデルが提案される。
提案手法は,再構成とセグメント化の両面から,他のSOTA手法よりも優れた性能を示すMBBデータセット上で検証されている。
論文 参考訳(メタデータ) (2021-05-14T05:55:27Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
前立腺MRIのセグメント化におけるモデル一般化を改善するために,新しい形状認識メタラーニング手法を提案する。
実験結果から,本手法は未確認領域の6つの設定すべてにおいて,最先端の一般化手法を一貫して上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2020-07-04T07:56:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。