Efficient Strategy Synthesis for MDPs via Hierarchical Block Decomposition
- URL: http://arxiv.org/abs/2506.17792v1
- Date: Sat, 21 Jun 2025 19:03:03 GMT
- Title: Efficient Strategy Synthesis for MDPs via Hierarchical Block Decomposition
- Authors: Alexandros Evangelidis, Gricel Vázquez, Simos Gerasimou,
- Abstract summary: Software product lines and robotics utilise Markov decision processes (MDPs) to capture uncertainty and analyse sequential decision-making problems.<n>Despite the usefulness of conventional policy synthesis methods, they fail to scale to large state spaces.<n>Our approach addresses this issue and accelerates policy synthesis in large MDPs by dynamically refining the MDP and iteratively selecting the most fragile MDP regions for refinement.
- Score: 47.123254940289726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Software-intensive systems, such as software product lines and robotics, utilise Markov decision processes (MDPs) to capture uncertainty and analyse sequential decision-making problems. Despite the usefulness of conventional policy synthesis methods, they fail to scale to large state spaces. Our approach addresses this issue and accelerates policy synthesis in large MDPs by dynamically refining the MDP and iteratively selecting the most fragile MDP regions for refinement. This iterative procedure offers a balance between accuracy and efficiency, as refinement occurs only when necessary. Through a comprehensive empirical evaluation comprising diverse case studies and MDPs up to 1M states, we demonstrate significant performance improvements yielded by our approach compared to the leading probabilistic model checker PRISM (up to 2x), thus offering a very competitive solution for real-world policy synthesis tasks in larger MDPs.
Related papers
- Efficient Solving of Large Single Input Superstate Decomposable Markovian Decision Process [1.17431678544333]
A key step in Bellman dynamic programming algorithms is the policy evaluation.<n>We develop an exact and efficient policy evaluation method based on this structure.<n>This yields a scalable solution applicable to both average and discounted reward MDPs.
arXiv Detail & Related papers (2025-08-01T17:49:27Z) - Efficient Solution and Learning of Robust Factored MDPs [57.2416302384766]
Learning r-MDPs from interactions with an unknown environment enables the synthesis of robust policies with provable guarantees on performance.<n>We propose novel methods for solving and learning r-MDPs based on factored state representations.
arXiv Detail & Related papers (2025-08-01T15:23:15Z) - Policy Gradient for Robust Markov Decision Processes [16.281897051782863]
This paper introduces a novel policy gradient method, Double-Loop Robust Policy Mirror Descent (MD), for solving robust Markov Decision Processes (MDPs)
MD employs a general mirror descent update rule for the policy optimization with adaptive tolerance per iteration, guaranteeing convergence to a globally optimal policy.
We provide a comprehensive analysis of MD, including new convergence results under both direct and softmax parameterizations, and provide novel insights into the inner problem solution through Transition Mirror Ascent (TMA)
arXiv Detail & Related papers (2024-10-29T15:16:02Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Soft Robust MDPs and Risk-Sensitive MDPs: Equivalence, Policy Gradient, and Sample Complexity [7.57543767554282]
This paper introduces a new formulation for risk-sensitive MDPs, which assesses risk in a slightly different manner compared to the classical Markov risk measure.
We derive the policy gradient theorem for both problems, proving gradient domination and global convergence of the exact policy gradient method.
We also propose a sample-based offline learning algorithm, namely the robust fitted-Z iteration (RFZI)
arXiv Detail & Related papers (2023-06-20T15:51:25Z) - Twice Regularized Markov Decision Processes: The Equivalence between
Robustness and Regularization [64.60253456266872]
Markov decision processes (MDPs) aim to handle changing or partially known system dynamics.
Regularized MDPs show more stability in policy learning without impairing time complexity.
Bellman operators enable us to derive planning and learning schemes with convergence and generalization guarantees.
arXiv Detail & Related papers (2023-03-12T13:03:28Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Robust Entropy-regularized Markov Decision Processes [23.719568076996662]
We study a robust version of the ER-MDP model, where the optimal policies are required to be robust.
We show that essential properties that hold for the non-robust ER-MDP and robust unregularized MDP models also hold in our settings.
We show how our framework and results can be integrated into different algorithmic schemes including value or (modified) policy.
arXiv Detail & Related papers (2021-12-31T09:50:46Z) - Twice regularized MDPs and the equivalence between robustness and
regularization [65.58188361659073]
We show that policy iteration on reward-robust MDPs can have the same time complexity as on regularized MDPs.
We generalize regularized MDPs to twice regularized MDPs.
arXiv Detail & Related papers (2021-10-12T18:33:45Z) - Risk-Averse Decision Making Under Uncertainty [18.467950783426947]
A large class of decision making under uncertainty problems can be described via Markov decision processes (MDPs) or partially observable MDPs (POMDPs)
In this paper, we consider the problem of designing policies for MDPs and POMDPs with objectives and constraints in terms of dynamic coherent risk measures.
arXiv Detail & Related papers (2021-09-09T07:52:35Z) - Safe Exploration by Solving Early Terminated MDP [77.10563395197045]
We introduce a new approach to address safe RL problems under the framework of Early TerminatedP (ET-MDP)
We first define the ET-MDP as an unconstrained algorithm with the same optimal value function as its corresponding CMDP.
An off-policy algorithm based on context models is then proposed to solve the ET-MDP, which thereby solves the corresponding CMDP with better performance and improved learning efficiency.
arXiv Detail & Related papers (2021-07-09T04:24:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.