IDAL: Improved Domain Adaptive Learning for Natural Images Dataset
- URL: http://arxiv.org/abs/2506.17931v1
- Date: Sun, 22 Jun 2025 07:56:10 GMT
- Title: IDAL: Improved Domain Adaptive Learning for Natural Images Dataset
- Authors: Ravi Kant Gupta, Shounak Das, Amit Sethi,
- Abstract summary: We present a novel approach for unsupervised domain adaptation (UDA) for natural images.<n>Its neural architecture uses the deep structure of ResNet and the effective separation of scales of feature pyramidal network (FPN) to work with both content and style features.<n>This tailored combination is designed to address challenges inherent to natural images, such as scale, noise, and style shifts, that occur on top of a multi-modal (multi-class) distribution.
- Score: 2.6733991338938026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel approach for unsupervised domain adaptation (UDA) for natural images. A commonly-used objective for UDA schemes is to enhance domain alignment in representation space even if there is a domain shift in the input space. Existing adversarial domain adaptation methods may not effectively align different domains of multimodal distributions associated with classification problems. Our approach has two main features. Firstly, its neural architecture uses the deep structure of ResNet and the effective separation of scales of feature pyramidal network (FPN) to work with both content and style features. Secondly, it uses a combination of a novel loss function and judiciously selected existing loss functions to train the network architecture. This tailored combination is designed to address challenges inherent to natural images, such as scale, noise, and style shifts, that occur on top of a multi-modal (multi-class) distribution. The combined loss function not only enhances model accuracy and robustness on the target domain but also speeds up training convergence. Our proposed UDA scheme generalizes better than state-of-the-art for CNN-based methods on Office-Home, Office-31, and VisDA-2017 datasets and comaparable for DomainNet dataset.
Related papers
- Dynamic Instance Domain Adaptation [109.53575039217094]
Most studies on unsupervised domain adaptation assume that each domain's training samples come with domain labels.
We develop a dynamic neural network with adaptive convolutional kernels to generate instance-adaptive residuals to adapt domain-agnostic deep features to each individual instance.
Our model, dubbed DIDA-Net, achieves state-of-the-art performance on several commonly used single-source and multi-source UDA datasets.
arXiv Detail & Related papers (2022-03-09T20:05:54Z) - TDACNN: Target-domain-free Domain Adaptation Convolutional Neural
Network for Drift Compensation in Gas Sensors [6.451060076703026]
In this paper, deep learning based on a target-domain-free domain adaptation convolutional neural network (TDACNN) is proposed.
The main concept is that CNNs extract not only the domain-specific features of samples but also the domain-invariant features underlying both the source and target domains.
Experiments on two datasets drift under different settings demonstrate the superiority of TDACNN compared with several state-of-the-art methods.
arXiv Detail & Related papers (2021-10-14T16:30:17Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic
Segmentation [97.74059510314554]
Unsupervised domain adaptation (UDA) for semantic segmentation aims to adapt a segmentation model trained on the labeled source domain to the unlabeled target domain.
Existing methods try to learn domain invariant features while suffering from large domain gaps.
We propose a novel Dual Soft-Paste (DSP) method in this paper.
arXiv Detail & Related papers (2021-07-20T16:22:40Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Improving Unsupervised Domain Adaptation by Reducing Bi-level Feature
Redundancy [14.94720207222332]
In this paper, we emphasize the significance of reducing feature redundancy for improving UDA in a bi-level way.
For the first level, we try to ensure compact domain-specific features with a transferable decorrelated normalization module.
In the second level, domain-invariant feature redundancy caused by domain-shared representation is further mitigated via an alternative brandity.
arXiv Detail & Related papers (2020-12-28T08:00:56Z) - Joint Progressive Knowledge Distillation and Unsupervised Domain
Adaptation [15.115086812609182]
We propose an unexplored direction -- the joint optimization of CNNs to provide a compressed model that is adapted to perform well for a given target domain.
Our method is compared against state-of-the-art compression and UDA techniques, using two popular classification datasets for UDA -- Office31 and ImageClef-DA.
arXiv Detail & Related papers (2020-05-16T01:07:03Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.