論文の概要: Action Language BC+
- arxiv url: http://arxiv.org/abs/2506.18044v1
- Date: Sun, 22 Jun 2025 14:09:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.715971
- Title: Action Language BC+
- Title(参考訳): アクション言語 BC+
- Authors: Joseph Babb, Joohyung Lee,
- Abstract要約: アクション言語は、アクションの効果を記述する自然言語の一部の形式モデルである。
我々は、アクション言語と現代のASP言語とのギャップを埋めるBC+と呼ばれる新しいアクション言語を提案する。
- 参考スコア(独自算出の注目度): 3.677571687801579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Action languages are formal models of parts of natural language that are designed to describe effects of actions. Many of these languages can be viewed as high level notations of answer set programs structured to represent transition systems. However, the form of answer set programs considered in the earlier work is quite limited in comparison with the modern Answer Set Programming (ASP) language, which allows several useful constructs for knowledge representation, such as choice rules, aggregates, and abstract constraint atoms. We propose a new action language called BC+, which closes the gap between action languages and the modern ASP language. The main idea is to define the semantics of BC+ in terms of general stable model semantics for propositional formulas, under which many modern ASP language constructs can be identified with shorthands for propositional formulas. Language BC+ turns out to be sufficiently expressive to encompass the best features of other action languages, such as languages B, C, C+, and BC. Computational methods available in ASP solvers are readily applicable to compute BC+, which led to an implementation of the language by extending system cplus2asp.
- Abstract(参考訳): アクション言語は、アクションの効果を記述するために設計された自然言語の一部の形式モデルである。
これらの言語の多くは、遷移系を表すために構成された解集合プログラムの高レベル表記と見なすことができる。
しかし、初期の研究で考慮された解集合プログラムの形式は、選択規則、集約、抽象的制約原子といった知識表現のためのいくつかの有用な構成を可能にする現代のAnswer Set Programming (ASP)言語と比較して非常に限定的である。
我々は、アクション言語と現代のASP言語とのギャップを埋めるBC+と呼ばれる新しいアクション言語を提案する。
主な考え方は、命題公式の一般的な安定モデル意味論の観点から、BC+の意味論を定義することである。
BC+言語は、B言語、C言語、C言語、BC言語などの他のアクション言語の最高の特徴を包含するのに十分な表現力を持っていることが判明した。
ASPソルバで利用可能な計算メソッドは、BC+の計算に容易に適用でき、システムcplus2aspを拡張することで言語の実装につながった。
関連論文リスト
- Type-Constrained Code Generation with Language Models [51.03439021895432]
本稿では,型システムを利用してコード生成を誘導する型制約デコード手法を提案する。
そこで本研究では,新しい接頭辞オートマトンと,在来型を探索する手法を開発し,LLM生成コードに適切な型付けを強制するための健全なアプローチを構築した。
提案手法は,コード合成,翻訳,修復作業において,コンパイルエラーを半分以上削減し,機能的正しさを著しく向上させる。
論文 参考訳(メタデータ) (2025-04-12T15:03:00Z) - Code-Switched Language Identification is Harder Than You Think [69.63439391717691]
コードスイッチングは、文字と音声の通信において一般的な現象である。
CSコーパスの構築の応用について検討する。
タスクをもっと多くの言語に拡張することで、タスクをより現実的にします。
文レベルのマルチラベルタグ付け問題としてタスクを再構築し、より難易度の高いものにする。
論文 参考訳(メタデータ) (2024-02-02T15:38:47Z) - Natural Language Embedded Programs for Hybrid Language Symbolic Reasoning [84.12154024070024]
本研究では,数学・記号的推論,自然言語理解,後続の課題に対処するための統合フレームワークとして,自然言語組み込みプログラム(NLEP)を提案する。
我々のアプローチは,構造化知識の自然言語表現を含むデータ構造上の関数を定義する完全なPythonプログラムを生成するよう,言語モデルに促す。
Pythonインタープリタが生成されたコードを実行し、出力をプリントする。
論文 参考訳(メタデータ) (2023-09-19T17:54:21Z) - Coupling Large Language Models with Logic Programming for Robust and
General Reasoning from Text [5.532477732693001]
大規模言語モデルは, 意味論的に非常に効果的な数ショットとして機能することを示す。
自然言語文を論理形式に変換し、応答集合プログラムの入力として機能する。
本手法は,bAbI, StepGame, CLUTRR, gSCAN など,いくつかのベンチマークにおいて最先端性能を実現する。
論文 参考訳(メタデータ) (2023-07-15T03:29:59Z) - Prompting Is Programming: A Query Language for Large Language Models [5.8010446129208155]
我々はLMP(Language Model Programming)という新しいアイデアを提示する。
LMPは、純粋なテキストプロンプトからテキストプロンプトとスクリプティングの直感的な組み合わせまで、言語モデルを一般化する。
LMQLは、さまざまな最先端のプロンプトメソッドを直感的にキャプチャできることを示す。
論文 参考訳(メタデータ) (2022-12-12T18:09:09Z) - Benchmarking Language Models for Code Syntax Understanding [79.11525961219591]
事前学習された言語モデルは、自然言語処理とプログラム理解の両方において素晴らしい性能を示している。
本研究では,プログラムの構文構造を特定するための,最先端の事前訓練モデルの最初の徹底的なベンチマークを行う。
この結果から,既存のプログラミング言語の事前学習手法の限界が指摘され,構文構造をモデル化することの重要性が示唆された。
論文 参考訳(メタデータ) (2022-10-26T04:47:18Z) - Pre-Trained Language Models for Interactive Decision-Making [72.77825666035203]
目的と観測を埋め込みのシーケンスとして表現する模倣学習の枠組みを述べる。
このフレームワークは様々な環境にまたがって効果的な一般化を可能にすることを実証する。
新たなゴールや新しいシーンを含むテストタスクでは、言語モデルによる初期化ポリシーはタスク完了率を43.6%改善する。
論文 参考訳(メタデータ) (2022-02-03T18:55:52Z) - Explicitly Modeling Syntax in Language Models with Incremental Parsing
and a Dynamic Oracle [88.65264818967489]
我々は新しい構文認識型言語モデル、Syntactic Ordered Memory (SOM)を提案する。
モデルは、構造をインクリメンタルにモデル化し、標準言語モデルの条件付き確率設定を維持する。
実験により、SOMは言語モデリング、インクリメンタル解析、構文一般化テストにおいて強力な結果が得られることが示された。
論文 参考訳(メタデータ) (2020-10-21T17:39:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。