論文の概要: RL for Reasoning by Adaptively Revealing Rationales
- arxiv url: http://arxiv.org/abs/2506.18110v1
- Date: Sun, 22 Jun 2025 17:46:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.754245
- Title: RL for Reasoning by Adaptively Revealing Rationales
- Title(参考訳): 合理的な合理的推論による推論のためのRL
- Authors: Mohammad Hossein Amani, Aryo Lotfi, Nicolas Mario Baldwin, Samy Bengio, Mehrdad Farajtabar, Emmanuel Abbe, Robert West,
- Abstract要約: 監督された微調整(SFT)は密度の高い地下構造ラベルに依存しており、シーケンスの長さが大きくなるにつれてコストが増大する。
AdaBack(アダプティブ・バックトラック)は,学習中の目標出力の部分的なプレフィックスのみを明らかにする,サンプルごとのカリキュラム学習アルゴリズムである。
部分解に対する適応的なカリキュラムは、そうでなければ難解な問題を確実に解決することを示します。
- 参考スコア(独自算出の注目度): 36.50924054394857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose that reinforcement learning (RL) from partial expert demonstrations is not merely a training heuristic, but a promising framework for solving complex sequence generation tasks. Supervised fine-tuning (SFT) relies on dense ground-truth labels, which become increasingly costly as sequence length grows. RL, on the other hand, struggles with sparse rewards and a combinatorially large output space. We address this by introducing adaptive backtracking (AdaBack), a per-sample curriculum learning algorithm that reveals only a partial prefix of the target output during training. The supervision length is adjusted dynamically for each sample based on the model's past reward signal, allowing it to incrementally learn to complete reasoning chains by conditioning on correct partial solutions. We investigate this intermediate regime between SFT and RL and argue that per-sample curriculum learning is more than a trade-off between efficiency and generality, it can succeed in tasks with long sequences of latent dependencies where SFT and RL both fail to generalize. Using a synthetic task with latent parity constraints, we show that our adaptive curriculum over partial answers reliably solves problems that are otherwise intractable. On mathematical reasoning benchmarks (MATH, GSM8k), we find that curriculum learning enables models to solve problems that RL alone cannot, acquiring new reasoning capabilities through incremental exposure to partial solutions.
- Abstract(参考訳): 部分的専門家によるデモンストレーションから得られた強化学習(RL)は、単なる訓練ヒューリスティックではなく、複雑なシーケンス生成タスクを解くための有望なフレームワークである、と提案する。
監督された微調整(SFT)は密度の高い地下構造ラベルに依存しており、シーケンスの長さが大きくなるにつれてコストが増大する。
一方、RLはスパース報酬と組合せ的に大きな出力空間に苦しむ。
AdaBack(アダプティブ・バックトラック)は,学習中の目標出力の部分的なプレフィックスのみを明らかにする,サンプルごとのカリキュラム学習アルゴリズムである。
モデルの過去の報酬信号に基づいて各サンプルに対して、監督長を動的に調整し、正しい部分解を条件づけることで、推論チェーンを完成させることが漸進的に学べるようにした。
本稿では,SFT と RL の中間的状態について検討し,SFT と RL の双方が一般化に失敗する待ち行列の長いタスクにおいて,サンプルごとのカリキュラム学習は効率と一般性のトレードオフ以上のものであると主張する。
係り受けの制約のある合成課題を用いて、部分解に対する適応的なカリキュラムが、そうでなければ難解な問題を確実に解決することを示す。
数学的推論ベンチマーク(MATH, GSM8k)では、カリキュラム学習により、RLだけでは不可能な問題を解決することができ、部分解への漸進的露出によって新たな推論能力を得ることができる。
関連論文リスト
- Curriculum Reinforcement Learning from Easy to Hard Tasks Improves LLM Reasoning [52.32193550674408]
強化学習(RL)による言語モデルの推論能力の向上を目指す。
我々は,LLMが徐々に推論スキルを構築できるように,タスクを簡単から困難(E2H)にスケジュールすることを提案する。
E2H Reasonerは小型LLM(1.5B〜3B)の推論能力を著しく改善する
論文 参考訳(メタデータ) (2025-06-07T02:41:54Z) - TACO: Think-Answer Consistency for Optimized Long-Chain Reasoning and Efficient Data Learning via Reinforcement Learning in LVLMs [50.820065021136024]
DeepSeek R1には、大規模言語モデル(LLM)のためのかなり高度な複雑な推論がある。
最近の手法は、R1の推論能力をマルチモーダルな設定で再現しようと試みている。
視覚推論のための新しい強化学習アルゴリズムTACOを提案する。
論文 参考訳(メタデータ) (2025-05-27T06:30:48Z) - Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers [24.934432751910443]
本研究は,代用信号として形式と長さを応用し,数学的問題解決のためにLLMを訓練するものである。
本研究は,形式的正当性のみに着目した報奨関数が,初期の標準GRPOアルゴリズムに匹敵する性能向上をもたらすことを示す。
その結果、フォーマット長のサロゲート信号を利用するGRPOアプローチは、マッチするだけでなく、標準のGRPOアルゴリズムの性能を上回る。
論文 参考訳(メタデータ) (2025-05-26T02:56:22Z) - Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards [49.7719149179179]
本稿では,PPOを用いた強化学習(RL)の実現可能性について検討する。
我々は,生成した出力の質を自動的に評価するために,明示的な報酬関数をプログラムできるプログラミングなどの形式言語で表されるタスクに焦点をあてる。
以上の結果から,2つの形式言語タスクに対する純粋なRLベースのトレーニングは困難であり,単純な算術タスクにおいても成功は限られていることがわかった。
論文 参考訳(メタデータ) (2024-10-22T15:59:58Z) - Teaching Large Language Models to Reason with Reinforcement Learning [38.17625148525193]
人間のフィードバックからの強化学習(textbfRLHF)は、LLM出力と人間の嗜好を整合させる主要なアプローチとして現れている。
RLHFの成功に触発され,フィードバックから学習する複数のアルゴリズムの性能について検討した。
論文 参考訳(メタデータ) (2024-03-07T16:36:29Z) - ReFT: Reasoning with Reinforced Fine-Tuning [9.80361828538909]
本稿では,Reinforced Fine-Tuning (ReFT) というシンプルな手法を提案する。
ReFTはまずSFTを用いてモデルをウォームアップし,さらにオンライン強化学習,特に本論文のPPOアルゴリズムを用いる。
GSM8K、MathQA、SVAMPデータセットの実験では、ReFTがSFTを大幅に上回っている。
論文 参考訳(メタデータ) (2024-01-17T04:43:21Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
本稿では,PromptSRCと呼ばれる自己正規化フレームワークを提案する。
PromptSRCはタスク固有の汎用表現とタスクに依存しない汎用表現の両方に最適化するプロンプトを導く。
論文 参考訳(メタデータ) (2023-07-13T17:59:35Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。