Dual-Forward Path Teacher Knowledge Distillation: Bridging the Capacity Gap Between Teacher and Student
- URL: http://arxiv.org/abs/2506.18244v1
- Date: Mon, 23 Jun 2025 02:22:53 GMT
- Title: Dual-Forward Path Teacher Knowledge Distillation: Bridging the Capacity Gap Between Teacher and Student
- Authors: Tong Li, Long Liu, Yihang Hu, Hu Chen, Shifeng Chen,
- Abstract summary: We propose Dual-Forward Path Teacher Knowledge Distillation (DFPT-KD) to address the capacity gap problem.<n>DFPT-KD replaces the pre-trained teacher with a novel dual-forward path teacher to supervise the learning of student.<n>Experiments demonstrate that DFPT-KD leads to trained students performing better than the vanilla KD.
- Score: 10.640836487708647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge distillation (KD) provides an effective way to improve the performance of a student network under the guidance of pre-trained teachers. However, this approach usually brings in a large capacity gap between teacher and student networks, limiting the distillation gains. Previous methods addressing this problem either discard accurate knowledge representation or fail to dynamically adjust the transferred knowledge, which is less effective in addressing the capacity gap problem and hinders students from achieving comparable performance with the pre-trained teacher. In this work, we extend the ideology of prompt-based learning to address the capacity gap problem, and propose Dual-Forward Path Teacher Knowledge Distillation (DFPT-KD), which replaces the pre-trained teacher with a novel dual-forward path teacher to supervise the learning of student. The key to DFPT-KD is prompt-based tuning, i.e., establishing an additional prompt-based forward path within the pre-trained teacher and optimizing it with the pre-trained teacher frozen to make the transferred knowledge compatible with the representation ability of the student. Extensive experiments demonstrate that DFPT-KD leads to trained students performing better than the vanilla KD. To make the transferred knowledge better compatible with the representation abilities of the student, we further fine-tune the whole prompt-based forward path, yielding a novel distillation approach dubbed DFPT-KD+. By extensive experiments, it is shown that DFPT-KD+ improves upon DFPT-KD and achieves state-of-the-art accuracy performance.
Related papers
- Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling [81.00825302340984]
We introduce Speculative Knowledge Distillation (SKD) to generate high-quality training data on-the-fly.<n>In SKD, the student proposes tokens, and the teacher replaces poorly ranked ones based on its own distribution.<n>We evaluate SKD on various text generation tasks, including translation, summarization, math, and instruction following.
arXiv Detail & Related papers (2024-10-15T06:51:25Z) - Tailoring Instructions to Student's Learning Levels Boosts Knowledge Distillation [52.53446712834569]
Learning Good Teacher Matters (LGTM) is an efficient training technique for incorporating distillation influence into the teacher's learning process.
Our LGTM outperforms 10 common knowledge distillation baselines on 6 text classification tasks in the GLUE benchmark.
arXiv Detail & Related papers (2023-05-16T17:50:09Z) - Gradient Knowledge Distillation for Pre-trained Language Models [21.686694954239865]
We propose Gradient Knowledge Distillation (GKD) to incorporate the gradient alignment objective into the distillation process.
Experimental results show that GKD outperforms previous KD methods regarding student performance.
arXiv Detail & Related papers (2022-11-02T12:07:16Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
We propose the dynamic prior knowledge (DPK), which integrates part of teacher's features as the prior knowledge before the feature distillation.
Our DPK makes the performance of the student model positively correlated with that of the teacher model, which means that we can further boost the accuracy of students by applying larger teachers.
arXiv Detail & Related papers (2022-06-13T11:52:13Z) - Faculty Distillation with Optimal Transport [53.69235109551099]
We propose to link teacher's task and student's task by optimal transport.
Based on the semantic relationship between their label spaces, we can bridge the support gap between output distributions.
Experiments under various settings demonstrate the succinctness and versatility of our method.
arXiv Detail & Related papers (2022-04-25T09:34:37Z) - Knowledge Distillation with Deep Supervision [6.8080936803807734]
We propose Deeply-Supervised Knowledge Distillation (DSKD), which fully utilizes class predictions and feature maps of the teacher model to supervise the training of shallow student layers.
A loss-based weight allocation strategy is developed in DSKD to adaptively balance the learning process of each shallow layer, so as to further improve the student performance.
arXiv Detail & Related papers (2022-02-16T03:58:21Z) - Pro-KD: Progressive Distillation by Following the Footsteps of the
Teacher [5.010360359434596]
Pro-KD technique defines a smoother training path for the student by following the training footprints of the teacher.
We demonstrate our technique is quite effective in mitigating the capacity-gap problem and the checkpoint search problem.
arXiv Detail & Related papers (2021-10-16T09:49:43Z) - Learning to Teach with Student Feedback [67.41261090761834]
Interactive Knowledge Distillation (IKD) allows the teacher to learn to teach from the feedback of the student.
IKD trains the teacher model to generate specific soft target at each training step for a certain student.
Joint optimization for both teacher and student is achieved by two iterative steps.
arXiv Detail & Related papers (2021-09-10T03:01:01Z) - Wasserstein Contrastive Representation Distillation [114.24609306495456]
We propose Wasserstein Contrastive Representation Distillation (WCoRD), which leverages both primal and dual forms of Wasserstein distance for knowledge distillation.
The dual form is used for global knowledge transfer, yielding a contrastive learning objective that maximizes the lower bound of mutual information between the teacher and the student networks.
Experiments demonstrate that the proposed WCoRD method outperforms state-of-the-art approaches on privileged information distillation, model compression and cross-modal transfer.
arXiv Detail & Related papers (2020-12-15T23:43:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.