Learning High-Quality Latent Representations for Anomaly Detection and Signal Integrity Enhancement in High-Speed Signals
- URL: http://arxiv.org/abs/2506.18288v1
- Date: Mon, 23 Jun 2025 04:48:22 GMT
- Title: Learning High-Quality Latent Representations for Anomaly Detection and Signal Integrity Enhancement in High-Speed Signals
- Authors: Muhammad Usama, Hee-Deok Jang, Soham Shanbhag, Yoo-Chang Sung, Seung-Jun Bae, Dong Eui Chang,
- Abstract summary: This paper addresses the dual challenge of improving anomaly detection and signal integrity in high-speed dynamic random access memory signals.<n>We propose a joint training framework that integrates an autoencoder with a classifier to learn more distinctive latent representations.<n>We introduce a signal integrity enhancement algorithm that improves signal integrity by an average of 11.3%.
- Score: 3.0017241250121387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the dual challenge of improving anomaly detection and signal integrity in high-speed dynamic random access memory signals. To achieve this, we propose a joint training framework that integrates an autoencoder with a classifier to learn more distinctive latent representations by focusing on valid data features. Our approach is evaluated across three anomaly detection algorithms and consistently outperforms two baseline methods. Detailed ablation studies further support these findings. Furthermore, we introduce a signal integrity enhancement algorithm that improves signal integrity by an average of 11.3%. The source code and data used in this study are available at https://github.com/Usama1002/learning-latent-representations.
Related papers
- Neural Functions for Learning Periodic Signal [25.278349611091983]
We propose a novel network architecture, which extracts periodic patterns from measurements and leverages this information to represent the signal.<n>We demonstrate the efficacy of the proposed method through comprehensive experiments, including the learning of the periodic solutions for differential equations.
arXiv Detail & Related papers (2025-06-11T08:52:01Z) - Exploring Generalized Gait Recognition: Reducing Redundancy and Noise within Indoor and Outdoor Datasets [24.242460774158463]
Generalized gait recognition aims to achieve robust performance across diverse domains.<n>Mixed-dataset training is widely used to enhance generalization.<n>We propose a unified framework that systematically improves cross-domain gait recognition.
arXiv Detail & Related papers (2025-05-21T06:46:09Z) - DeepGrav: Anomalous Gravitational-Wave Detection Through Deep Latent Features [0.0]
This work introduces a novel deep learning-based approach for gravitational wave anomaly detection.<n>We use a modified convolutional neural network architecture inspired by ResNet.<n>We get to the first place at the NSF HDR A3D3: Detecting Anomalous Gravitational Wave Signals competition.
arXiv Detail & Related papers (2025-03-05T16:14:22Z) - Semi-supervised Anomaly Detection via Adaptive Reinforcement Learning-Enabled Method with Causal Inference for Sensor Signals [15.249261198557218]
Semi-supervised anomaly detection for sensor signals is critical in ensuring system reliability in smart manufacturing.
This paper innovatively constructs a counterfactual causal reinforcement learning model, termed Triple-Assisted Causal Reinforcement Learning Anomaly Detector (Tri-CRLAD)
Experimental results across seven diverse sensor signal datasets demonstrate that Tri-CRLAD outperforms nine state-of-the-art baseline methods.
arXiv Detail & Related papers (2024-05-11T06:10:05Z) - Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image Fusion [3.868072865207522]
Image-based rigid 2D/3D registration is a critical technique for fluoroscopic guided surgical interventions.
We propose a novel fully differentiable correlation-driven network using a dual-branch CNN-transformer encoder.
A correlation-driven loss is proposed for low-frequency feature and high-frequency feature decomposition based on embedded information.
arXiv Detail & Related papers (2024-02-04T14:12:51Z) - MLCA-AVSR: Multi-Layer Cross Attention Fusion based Audio-Visual Speech Recognition [62.89464258519723]
We propose a multi-layer cross-attention fusion based AVSR approach that promotes representation of each modality by fusing them at different levels of audio/visual encoders.
Our proposed approach surpasses the first-place system, establishing a new SOTA cpCER of 29.13% on this dataset.
arXiv Detail & Related papers (2024-01-07T08:59:32Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
We resort to a novel kernel strategy to identify the most informative point clouds to acquire labels.
To accommodate both one-stage (i.e., SECOND) and two-stage detectors, we incorporate the classification entropy tangent and well trade-off between detection performance and the total number of bounding boxes selected for annotation.
Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art method.
arXiv Detail & Related papers (2023-07-16T04:27:03Z) - Multi-task Learning for Radar Signal Characterisation [48.265859815346985]
This paper presents an approach for tackling radar signal classification and characterisation as a multi-task learning (MTL) problem.
We propose the IQ Signal Transformer (IQST) among several reference architectures that allow for simultaneous optimisation of multiple regression and classification tasks.
We demonstrate the performance of our proposed MTL model on a synthetic radar dataset, while also providing a first-of-its-kind benchmark for radar signal characterisation.
arXiv Detail & Related papers (2023-06-19T12:01:28Z) - Data-Driven Blind Synchronization and Interference Rejection for Digital
Communication Signals [98.95383921866096]
We study the potential of data-driven deep learning methods for separation of two communication signals from an observation of their mixture.
We show that capturing high-resolution temporal structures (nonstationarities) leads to substantial performance gains.
We propose a domain-informed neural network (NN) design that is able to improve upon both "off-the-shelf" NNs and classical detection and interference rejection methods.
arXiv Detail & Related papers (2022-09-11T14:10:37Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
We propose a new objective function that measures the KL-divergence between normal and anomalous data.
The proposed method significantly outperforms several state-of-the-arts on multiple benchmark datasets.
arXiv Detail & Related papers (2020-12-09T08:16:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.