BrainSymphony: A Transformer-Driven Fusion of fMRI Time Series and Structural Connectivity
- URL: http://arxiv.org/abs/2506.18314v1
- Date: Mon, 23 Jun 2025 06:00:21 GMT
- Title: BrainSymphony: A Transformer-Driven Fusion of fMRI Time Series and Structural Connectivity
- Authors: Moein Khajehnejad, Forough Habibollahi, Adeel Razi,
- Abstract summary: BrainSymphony is a lightweight, parameter-efficient foundation model for neuroimaging.<n>It achieves state-of-the-art performance while being pre-trained on significantly smaller public datasets.<n>BrainSymphony establishes that architecturally-aware, multimodal models can surpass their larger counterparts.
- Score: 2.3486335708866606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing foundation models for neuroimaging are often prohibitively large and data-intensive. We introduce BrainSymphony, a lightweight, parameter-efficient foundation model that achieves state-of-the-art performance while being pre-trained on significantly smaller public datasets. BrainSymphony's strong multimodal architecture processes functional MRI data through parallel spatial and temporal transformer streams, which are then efficiently distilled into a unified representation by a Perceiver module. Concurrently, it models structural connectivity from diffusion MRI using a novel signed graph transformer to encode the brain's anatomical structure. These powerful, modality-specific representations are then integrated via an adaptive fusion gate. Despite its compact design, our model consistently outperforms larger models on a diverse range of downstream benchmarks, including classification, prediction, and unsupervised network identification tasks. Furthermore, our model revealed novel insights into brain dynamics using attention maps on a unique external psilocybin neuroimaging dataset (pre- and post-administration). BrainSymphony establishes that architecturally-aware, multimodal models can surpass their larger counterparts, paving the way for more accessible and powerful research in computational neuroscience.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - BrainMT: A Hybrid Mamba-Transformer Architecture for Modeling Long-Range Dependencies in Functional MRI Data [0.09363323206192666]
Recent advances in deep learning have made it possible to predict phenotypic measures directly from functional magnetic resonance imaging (fMRI) brain volumes.<n>We introduce BrainMT, a novel hybrid framework designed to efficiently learn and integrate long-rangetemporal attributes in fMRI data.<n>Our framework operates in two stages: (1) a bidirectional Mamba block with a temporal-first scanning mechanism to capture global temporal interactions in a computationally efficient manner; and (2) a transformer block leveraging self-attention to model global spatial relationships.
arXiv Detail & Related papers (2025-06-27T19:20:41Z) - Spiking World Model with Multi-Compartment Neurons for Model-based Reinforcement Learning [6.0483672878162515]
Brain-inspired spiking neural networks (SNNs) have garnered significant research attention in algorithm design and perception applications.<n>However, their potential in the decision-making domain, particularly in model-based reinforcement learning, remains underexplored.<n>We propose a multi-compartment neuron model capable of nonlinearly integrating information from multiple dendritic sources to dynamically process long sequential inputs.
arXiv Detail & Related papers (2025-03-02T03:40:10Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - Brain Network Diffusion-Driven fMRI Connectivity Augmentation for Enhanced Autism Spectrum Disorder Diagnosis [12.677178802864029]
Due to the high cost of fMRI data acquisition and labeling, the amount of fMRI data is usually small.
With the rise of generative models, especially diffusion models, the ability to generate realistic samples close to the real data distribution has been widely used for data augmentations.
arXiv Detail & Related papers (2024-09-11T08:02:57Z) - Hierarchical Spatio-Temporal State-Space Modeling for fMRI Analysis [1.89314691075208]
Experimental results demonstrate significant improvements in the proposed FST-Mamba model on various brain-based classification and regression tasks.<n>Our work reveals the substantial potential of attention-free sequence modeling in brain discovery.
arXiv Detail & Related papers (2024-08-23T13:58:14Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.