Attention-Based Ensemble Learning for Crop Classification Using Landsat 8-9 Fusion
- URL: http://arxiv.org/abs/2506.18321v1
- Date: Mon, 23 Jun 2025 06:09:39 GMT
- Title: Attention-Based Ensemble Learning for Crop Classification Using Landsat 8-9 Fusion
- Authors: Zeeshan Ramzan, Nisar Ahmed, Qurat-ul-Ain Akram, Shahzad Asif, Muhammad Shahbaz, Rabin Chakrabortty, Ahmed F. Elaksher,
- Abstract summary: The study focuses on crop cover identification for irrigated regions of Central Punjab.<n>Data collection was executed in two stages: the first involved identifying and geocoding six target crops.<n>The second stage involved acquiring Landsat 8-9 imagery for each geocoded field to construct a labelled dataset.
- Score: 3.342115421418929
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remote sensing offers a highly effective method for obtaining accurate information on total cropped area and crop types. The study focuses on crop cover identification for irrigated regions of Central Punjab. Data collection was executed in two stages: the first involved identifying and geocoding six target crops through field surveys conducted in January and February 2023. The second stage involved acquiring Landsat 8-9 imagery for each geocoded field to construct a labelled dataset. The satellite imagery underwent extensive pre-processing, including radiometric calibration for reflectance values, atmospheric correction, and georeferencing verification to ensure consistency within a common coordinate system. Subsequently, image fusion techniques were applied to combine Landsat 8 and 9 spectral bands, creating a composite image with enhanced spectral information, followed by contrast enhancement. During data acquisition, farmers were interviewed, and fields were meticulously mapped using GPS instruments, resulting in a comprehensive dataset of 50,835 data points. This dataset facilitated the extraction of vegetation indices such as NDVI, SAVO, RECI, and NDRE. These indices and raw reflectance values were utilized for classification modeling using conventional classifiers, ensemble learning, and artificial neural networks. A feature selection approach was also incorporated to identify the optimal feature set for classification learning. This study demonstrates the effectiveness of combining remote sensing data and advanced modeling techniques to improve crop classification accuracy in irrigated agricultural regions.
Related papers
- A Deep Learning Architecture for Land Cover Mapping Using Spatio-Temporal Sentinel-1 Features [1.907072234794597]
The study focuses on three distinct regions - Amazonia, Africa, and Siberia - and evaluates the model performance across diverse ecoregions within these areas.<n>The results demonstrate the effectiveness and the capabilities of the proposed methodology in achieving overall accuracy (O.A.) values, even in regions with limited training data.
arXiv Detail & Related papers (2025-03-10T12:15:35Z) - Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE) is a novel embedding space specifically designed for deepfake detection.
CoDE is trained via contrastive learning by additionally enforcing global-local similarities.
arXiv Detail & Related papers (2024-07-29T18:00:10Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Deep-Learning Framework for Optimal Selection of Soil Sampling Sites [0.0]
This work leverages the recent advancements of deep learning in image processing to find optimal locations that present the important characteristics of a field.
Our framework is constructed with an encoder-decoder architecture with the self-attention mechanism as the backbone.
The model has achieved impressive results on the testing dataset, with a mean accuracy of 99.52%, a mean Intersection over Union (IoU) of 57.35%, and a mean Dice Coefficient of 71.47%.
arXiv Detail & Related papers (2023-09-02T16:19:21Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - The Canadian Cropland Dataset: A New Land Cover Dataset for
Multitemporal Deep Learning Classification in Agriculture [0.8602553195689513]
temporal patch-based dataset of Canadian croplands enriched with labels retrieved from the Canadian Annual Crop Inventory.
The dataset contains 78,536 manually verified high-resolution spatial images from 10 crop classes collected over four crop production years.
As a benchmark, we provide models and source code that allow a user to predict the crop class using a single image (ResNet, DenseNet, EfficientNet) or a sequence of images (LRCN, 3D-CNN) from the same location.
arXiv Detail & Related papers (2023-05-31T18:40:15Z) - Navya3DSeg -- Navya 3D Semantic Segmentation Dataset & split generation
for autonomous vehicles [63.20765930558542]
3D semantic data are useful for core perception tasks such as obstacle detection and ego-vehicle localization.
We propose a new dataset, Navya 3D (Navya3DSeg), with a diverse label space corresponding to a large scale production grade operational domain.
It contains 23 labeled sequences and 25 supplementary sequences without labels, designed to explore self-supervised and semi-supervised semantic segmentation benchmarks on point clouds.
arXiv Detail & Related papers (2023-02-16T13:41:19Z) - Semantically-consistent Landsat 8 image to Sentinel-2 image translation
for alpine areas [0.0]
In this paper, an experiment of domain adaptation through style-transferring is conducted using the HRSemI2I model to narrow the sensor discrepancy between Landsat 8 and Sentinel-2.
The HRSemI2I model, adjusted to work with 6-band imagery, shows significant intersection-over-union performance improvement for both mean and per class metrics.
A second contribution is providing different schemes of generalization between two label schemes - NALCMS 2015 and CORINE.
arXiv Detail & Related papers (2022-12-22T22:07:28Z) - Multimodal Crop Type Classification Fusing Multi-Spectral Satellite Time
Series with Farmers Crop Rotations and Local Crop Distribution [0.0]
We propose to tackle a land use and crop type classification task using three data types.
The Accuracy by 5.1 points in a 28-class setting (.948), and the micro-F1 by 9.6 points in a 10-class setting (.887) using only a set of crop of interests selected by an expert.
arXiv Detail & Related papers (2022-08-23T09:41:09Z) - A Multi-purpose Real Haze Benchmark with Quantifiable Haze Levels and
Ground Truth [61.90504318229845]
This paper introduces the first paired real image benchmark dataset with hazy and haze-free images, and in-situ haze density measurements.
This dataset was produced in a controlled environment with professional smoke generating machines that covered the entire scene.
A subset of this dataset has been used for the Object Detection in Haze Track of CVPR UG2 2022 challenge.
arXiv Detail & Related papers (2022-06-13T19:14:06Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Polarimetric Guided Nonlocal Means Covariance Matrix Estimation for
Defoliation Mapping [0.0]
We investigate the potential for using synthetic aperture radar (SAR) data to provide high resolution defoliation and regrowth mapping of trees in the tundra-forest ecotone.
Using aerial photographs, four areas with live forest and four areas with dead trees were identified.
Our filtering results in over $99.7 %$ classification accuracy, higher than traditional speckle filtering methods, and on par with the classification accuracy based on optical data.
arXiv Detail & Related papers (2020-01-24T13:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.