Controlled Generation with Equivariant Variational Flow Matching
- URL: http://arxiv.org/abs/2506.18340v1
- Date: Mon, 23 Jun 2025 06:42:48 GMT
- Title: Controlled Generation with Equivariant Variational Flow Matching
- Authors: Floor Eijkelboom, Heiko Zimmermann, Sharvaree Vadgama, Erik J Bekkers, Max Welling, Christian A. Naesseth, Jan-Willem van de Meent,
- Abstract summary: We derive a controlled generation objective within the framework of Variational Flow Matching (VFM)<n>We demonstrate that controlled generation can be implemented two ways: (1) by way of end-to-end training of conditional generative models, or (2) as a Bayesian inference problem.
- Score: 46.5935971807561
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We derive a controlled generation objective within the framework of Variational Flow Matching (VFM), which casts flow matching as a variational inference problem. We demonstrate that controlled generation can be implemented two ways: (1) by way of end-to-end training of conditional generative models, or (2) as a Bayesian inference problem, enabling post hoc control of unconditional models without retraining. Furthermore, we establish the conditions required for equivariant generation and provide an equivariant formulation of VFM tailored for molecular generation, ensuring invariance to rotations, translations, and permutations. We evaluate our approach on both uncontrolled and controlled molecular generation, achieving state-of-the-art performance on uncontrolled generation and outperforming state-of-the-art models in controlled generation, both with end-to-end training and in the Bayesian inference setting. This work strengthens the connection between flow-based generative modeling and Bayesian inference, offering a scalable and principled framework for constraint-driven and symmetry-aware generation.
Related papers
- CtrlDiff: Boosting Large Diffusion Language Models with Dynamic Block Prediction and Controllable Generation [7.250878248686215]
Diffusion-based language models have emerged as a compelling alternative due to their powerful parallel generation capabilities and inherent editability.<n>We propose CtrlDiff, a dynamic and controllable semi-autoregressive framework that adaptively determines the size of each generation block based on local semantics.
arXiv Detail & Related papers (2025-05-20T14:52:41Z) - Constrained Discrete Diffusion [61.81569616239755]
This paper introduces Constrained Discrete Diffusion (CDD), a novel integration of differentiable constraint optimization within the diffusion process.<n>CDD directly imposes constraints into the discrete diffusion sampling process, resulting in a training-free and effective approach.
arXiv Detail & Related papers (2025-03-12T19:48:12Z) - Decoupling Training-Free Guided Diffusion by ADMM [17.425995507142467]
We propose a novel framework that distinctly decouples the unconditional generation model and the guided loss function.
We develop a new algorithm based on the Alternating Direction Method of Multipliers (ADMM) to adaptively balance these components.
Our experiments demonstrate that our proposed method ADMMDiff consistently generates high-quality samples.
arXiv Detail & Related papers (2024-11-18T23:05:54Z) - Unraveling the Connections between Flow Matching and Diffusion Probabilistic Models in Training-free Conditional Generation [7.3604864243987365]
We propose Flow Matching-based Posterior Sampling (FMPS) to expand its application scope.<n>This correction term can be reformulated to incorporate a surrogate score function.<n>We show that FMPS achieves superior generation quality compared to existing state-of-the-art approaches.
arXiv Detail & Related papers (2024-11-12T08:14:39Z) - CAR: Controllable Autoregressive Modeling for Visual Generation [100.33455832783416]
Controllable AutoRegressive Modeling (CAR) is a novel, plug-and-play framework that integrates conditional control into multi-scale latent variable modeling.
CAR progressively refines and captures control representations, which are injected into each autoregressive step of the pre-trained model to guide the generation process.
Our approach demonstrates excellent controllability across various types of conditions and delivers higher image quality compared to previous methods.
arXiv Detail & Related papers (2024-10-07T00:55:42Z) - ControlVAR: Exploring Controllable Visual Autoregressive Modeling [48.66209303617063]
Conditional visual generation has witnessed remarkable progress with the advent of diffusion models (DMs)
Challenges such as expensive computational cost, high inference latency, and difficulties of integration with large language models (LLMs) have necessitated exploring alternatives to DMs.
This paper introduces Controlmore, a novel framework that explores pixel-level controls in visual autoregressive modeling for flexible and efficient conditional generation.
arXiv Detail & Related papers (2024-06-14T06:35:33Z) - InterHandGen: Two-Hand Interaction Generation via Cascaded Reverse Diffusion [53.90516061351706]
We present InterHandGen, a novel framework that learns the generative prior of two-hand interaction.
For sampling, we combine anti-penetration and synthesis-free guidance to enable plausible generation.
Our method significantly outperforms baseline generative models in terms of plausibility and diversity.
arXiv Detail & Related papers (2024-03-26T06:35:55Z) - D-Flow: Differentiating through Flows for Controlled Generation [37.80603174399585]
We introduce D-Flow, a framework for controlling the generation process by differentiating through the flow.
We motivate this framework by our key observation stating that for Diffusion/FM models trained with Gaussian probability paths, differentiating through the generation process projects gradient on the data manifold.
We validate our framework on linear and non-linear controlled generation problems including: image and audio inverse problems and conditional molecule generation reaching state of the art performance across all.
arXiv Detail & Related papers (2024-02-21T18:56:03Z) - Generative Flows with Invertible Attentions [135.23766216657745]
We introduce two types of invertible attention mechanisms for generative flow models.
We exploit split-based attention mechanisms to learn the attention weights and input representations on every two splits of flow feature maps.
Our method provides invertible attention modules with tractable Jacobian determinants, enabling seamless integration of it at any positions of the flow-based models.
arXiv Detail & Related papers (2021-06-07T20:43:04Z) - GroupifyVAE: from Group-based Definition to VAE-based Unsupervised
Representation Disentanglement [91.9003001845855]
VAE-based unsupervised disentanglement can not be achieved without introducing other inductive bias.
We address VAE-based unsupervised disentanglement by leveraging the constraints derived from the Group Theory based definition as the non-probabilistic inductive bias.
We train 1800 models covering the most prominent VAE-based models on five datasets to verify the effectiveness of our method.
arXiv Detail & Related papers (2021-02-20T09:49:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.