Decoupling Training-Free Guided Diffusion by ADMM
- URL: http://arxiv.org/abs/2411.12773v1
- Date: Mon, 18 Nov 2024 23:05:54 GMT
- Title: Decoupling Training-Free Guided Diffusion by ADMM
- Authors: Youyuan Zhang, Zehua Liu, Zenan Li, Zhaoyu Li, James J. Clark, Xujie Si,
- Abstract summary: We propose a novel framework that distinctly decouples the unconditional generation model and the guided loss function.
We develop a new algorithm based on the Alternating Direction Method of Multipliers (ADMM) to adaptively balance these components.
Our experiments demonstrate that our proposed method ADMMDiff consistently generates high-quality samples.
- Score: 17.425995507142467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider the conditional generation problem by guiding off-the-shelf unconditional diffusion models with differentiable loss functions in a plug-and-play fashion. While previous research has primarily focused on balancing the unconditional diffusion model and the guided loss through a tuned weight hyperparameter, we propose a novel framework that distinctly decouples these two components. Specifically, we introduce two variables ${x}$ and ${z}$, to represent the generated samples governed by the unconditional generation model and the guidance function, respectively. This decoupling reformulates conditional generation into two manageable subproblems, unified by the constraint ${x} = {z}$. Leveraging this setup, we develop a new algorithm based on the Alternating Direction Method of Multipliers (ADMM) to adaptively balance these components. Additionally, we establish the equivalence between the diffusion reverse step and the proximal operator of ADMM and provide a detailed convergence analysis of our algorithm under certain mild assumptions. Our experiments demonstrate that our proposed method ADMMDiff consistently generates high-quality samples while ensuring strong adherence to the conditioning criteria. It outperforms existing methods across a range of conditional generation tasks, including image generation with various guidance and controllable motion synthesis.
Related papers
- Controlled Generation with Equivariant Variational Flow Matching [46.5935971807561]
We derive a controlled generation objective within the framework of Variational Flow Matching (VFM)<n>We demonstrate that controlled generation can be implemented two ways: (1) by way of end-to-end training of conditional generative models, or (2) as a Bayesian inference problem.
arXiv Detail & Related papers (2025-06-23T06:42:48Z) - Adding Additional Control to One-Step Diffusion with Joint Distribution Matching [58.37264951734603]
JDM is a novel approach that minimizes the reverse KL divergence between image-condition joint distributions.
By deriving a tractable upper bound, JDM decouples fidelity learning from condition learning.
This asymmetric distillation scheme enables our one-step student to handle controls unknown to the teacher model.
arXiv Detail & Related papers (2025-03-09T15:06:50Z) - Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
We provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models.
We propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality.
arXiv Detail & Related papers (2025-03-04T17:46:51Z) - Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
We revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (i.e., the widely used summing-to-one version) brings about expectation shift of the generative distribution.
We propose ReCFG with a relaxation on the guidance coefficients such that denoising with ReCFG strictly aligns with the diffusion theory.
That way the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected.
arXiv Detail & Related papers (2024-10-24T13:41:32Z) - HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models [1.949927790632678]
This paper builds on the log transform known as the Cole-Hopf transform in Brownian motion contexts.
We develop a new algorithm, named the HJ-sampler, for inference for the inverse problem of a differential equation with given terminal observations.
arXiv Detail & Related papers (2024-09-15T05:30:54Z) - CoSIGN: Few-Step Guidance of ConSIstency Model to Solve General INverse Problems [3.3969056208620128]
We propose to push the boundary of inference steps to 1-2 NFEs while still maintaining high reconstruction quality.
Our method achieves new state-of-the-art in diffusion-based inverse problem solving.
arXiv Detail & Related papers (2024-07-17T15:57:50Z) - Repulsive Latent Score Distillation for Solving Inverse Problems [31.255943277671893]
Score Distillation Sampling (SDS) has been pivotal for leveraging pre-trained diffusion models in downstream tasks such as inverse problems.
We introduce a novel variational framework for posterior sampling to address mode collapse and latent space inversion.
We extend this framework with an augmented variational distribution that disentangles the latent and data.
arXiv Detail & Related papers (2024-06-24T14:43:02Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models with user-provided concepts.
This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents.
We propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs.
It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters.
arXiv Detail & Related papers (2023-07-20T09:06:21Z) - DiffFlow: A Unified SDE Framework for Score-Based Diffusion Models and
Generative Adversarial Networks [41.451880167535776]
We propose a unified theoretic framework for explicit generative models (SDMs) and generative adversarial nets (GANs)
Under our unified theoretic framework, we introduce several instantiations of the DiffFLow that provide new algorithms beyond GANs and SDMs with exact likelihood inference.
arXiv Detail & Related papers (2023-07-05T10:00:53Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - A conditional one-output likelihood formulation for multitask Gaussian
processes [0.0]
Multitask Gaussian processes (MTGP) are the Gaussian process framework's solution for multioutput regression problems.
Here we introduce a novel approach that simplifies the multitask learning.
We show that it is computationally competitive with state of the art options.
arXiv Detail & Related papers (2020-06-05T14:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.