Spatial frequency information fusion network for few-shot learning
- URL: http://arxiv.org/abs/2506.18364v1
- Date: Mon, 23 Jun 2025 07:47:11 GMT
- Title: Spatial frequency information fusion network for few-shot learning
- Authors: Wenqing Zhao, Guojia Xie, Han Pan, Biao Yang, Weichuan Zhang,
- Abstract summary: This paper proposes an SFIFNet with innovative data preprocessing.<n>The key of this method is enhancing the accuracy of image feature representation by integrating frequency domain information with spatial domain information.
- Score: 7.79100197855517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of Few-shot learning is to fully leverage the limited data resources for exploring the latent correlations within the data by applying algorithms and training a model with outstanding performance that can adequately meet the demands of practical applications. In practical applications, the number of images in each category is usually less than that in traditional deep learning, which can lead to over-fitting and poor generalization performance. Currently, many Few-shot classification models pay more attention to spatial domain information while neglecting frequency domain information, which contains more feature information. Ignoring frequency domain information will prevent the model from fully exploiting feature information, which would effect the classification performance. Based on conventional data augmentation, this paper proposes an SFIFNet with innovative data preprocessing. The key of this method is enhancing the accuracy of image feature representation by integrating frequency domain information with spatial domain information. The experimental results demonstrate the effectiveness of this method in enhancing classification performance.
Related papers
- FreRA: A Frequency-Refined Augmentation for Contrastive Learning on Time Series Classification [56.925103708982164]
We present a novel perspective from the frequency domain and identify three advantages for downstream classification: global, independent, and compact.<n>We propose the lightweight yet effective Frequency Refined Augmentation (FreRA) tailored for time series contrastive learning on classification tasks.<n>FreRA consistently outperforms ten leading baselines on time series classification, anomaly detection, and transfer learning tasks.
arXiv Detail & Related papers (2025-05-29T07:18:28Z) - CSTA: Spatial-Temporal Causal Adaptive Learning for Exemplar-Free Video Class-Incremental Learning [62.69917996026769]
A class-incremental learning task requires learning and preserving both spatial appearance and temporal action involvement.<n>We propose a framework that equips separate adapters to learn new class patterns, accommodating the incremental information requirements unique to each class.<n>A causal compensation mechanism is proposed to reduce the conflicts during increment and memorization for between different types of information.
arXiv Detail & Related papers (2025-01-13T11:34:55Z) - Enhancing Fine-Grained Visual Recognition in the Low-Data Regime Through Feature Magnitude Regularization [23.78498670529746]
We introduce a regularization technique to ensure that the magnitudes of the extracted features are evenly distributed.
Despite its apparent simplicity, our approach has demonstrated significant performance improvements across various fine-grained visual recognition datasets.
arXiv Detail & Related papers (2024-09-03T07:32:46Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Few-Shot Learning by Integrating Spatial and Frequency Representation [25.11147383752403]
We propose to integrate the frequency information into the learning model to boost the discrimination ability of the system.
We employ Discrete Cosine Transformation (DCT) to generate the frequency representation, then, integrate the features from both the spatial domain and frequency domain for classification.
arXiv Detail & Related papers (2021-05-11T21:44:31Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm.
We exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting.
arXiv Detail & Related papers (2020-12-16T21:46:33Z) - Mutual Information-based Disentangled Neural Networks for Classifying
Unseen Categories in Different Domains: Application to Fetal Ultrasound
Imaging [10.504733425082335]
Deep neural networks exhibit limited generalizability across images with different entangled domain features and categorical features.
We propose Mutual Information-based Disentangled Neural Networks (MIDNet), which extract generalizable categorical features to transfer knowledge to unseen categories in a target domain.
We extensively evaluate the proposed method on fetal ultrasound datasets for two different image classification tasks.
arXiv Detail & Related papers (2020-10-30T17:32:18Z) - Fine-Grain Few-Shot Vision via Domain Knowledge as Hyperspherical Priors [79.22051549519989]
Prototypical networks have been shown to perform well at few-shot learning tasks in computer vision.
We show how we can achieve few-shot fine-grain classification by maximally separating the classes while incorporating domain knowledge as informative priors.
arXiv Detail & Related papers (2020-05-23T02:10:57Z) - Learning Cross-domain Generalizable Features by Representation
Disentanglement [11.74643883335152]
Deep learning models exhibit limited generalizability across different domains.
We propose Mutual-Information-based Disentangled Neural Networks (MIDNet) to extract generalizable features that enable transferring knowledge to unseen categorical features in target domains.
We demonstrate our method on handwritten digits datasets and a fetal ultrasound dataset for image classification tasks.
arXiv Detail & Related papers (2020-02-29T17:53:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.