New Hardness Results for Low-Rank Matrix Completion
- URL: http://arxiv.org/abs/2506.18440v1
- Date: Mon, 23 Jun 2025 09:22:28 GMT
- Title: New Hardness Results for Low-Rank Matrix Completion
- Authors: Dror Chawin, Ishay Haviv,
- Abstract summary: The paper presents new $mathsfNP $-hardness results for low-rank matrix completion problems.<n>We show that for every sufficiently large integer $d$ and any real number $varepsilon in [ 2-O(d),frac17]$, given a partial matrix $A$ with exposed values of magnitude at most $1$ that admits a positive semi-definite completion of rank $d$, it is $mathsfNP$-hard to find a positive semi-definite matrix.<n>Our proofs involve a
- Score: 2.7624021966289605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The low-rank matrix completion problem asks whether a given real matrix with missing values can be completed so that the resulting matrix has low rank or is close to a low-rank matrix. The completed matrix is often required to satisfy additional structural constraints, such as positive semi-definiteness or a bounded infinity norm. The problem arises in various research fields, including machine learning, statistics, and theoretical computer science, and has broad real-world applications. This paper presents new $\mathsf{NP} $-hardness results for low-rank matrix completion problems. We show that for every sufficiently large integer $d$ and any real number $\varepsilon \in [ 2^{-O(d)},\frac{1}{7}]$, given a partial matrix $A$ with exposed values of magnitude at most $1$ that admits a positive semi-definite completion of rank $d$, it is $\mathsf{NP}$-hard to find a positive semi-definite matrix that agrees with each given value of $A$ up to an additive error of at most $\varepsilon$, even when the rank is allowed to exceed $d$ by a multiplicative factor of $O (\frac{1}{\varepsilon ^2 \cdot \log(1/\varepsilon)} )$. This strengthens a result of Hardt, Meka, Raghavendra, and Weitz (COLT, 2014), which applies to multiplicative factors smaller than $2$ and to $\varepsilon $ that decays polynomially in $d$. We establish similar $\mathsf{NP}$-hardness results for the case where the completed matrix is constrained to have a bounded infinity norm (rather than be positive semi-definite), for which all previous hardness results rely on complexity assumptions related to the Unique Games Conjecture. Our proofs involve a novel notion of nearly orthonormal representations of graphs, the concept of line digraphs, and bounds on the rank of perturbed identity matrices.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Quantum and classical query complexities of functions of matrices [0.0]
We show that for any continuous function $f(x):[-1,1]rightarrow [-1,1]$, the quantum query complexity of computing $brai f(A) ketjpm varepsilon/4$ is lower bounded by $Omega(widetildedeg_varepsilon(f))$.
arXiv Detail & Related papers (2023-11-13T00:45:41Z) - One-sided Matrix Completion from Two Observations Per Row [95.87811229292056]
We propose a natural algorithm that involves imputing the missing values of the matrix $XTX$.
We evaluate our algorithm on one-sided recovery of synthetic data and low-coverage genome sequencing.
arXiv Detail & Related papers (2023-06-06T22:35:16Z) - Towards Characterizing the First-order Query Complexity of Learning
(Approximate) Nash Equilibria in Zero-sum Matrix Games [0.0]
We show that exact equilibria can be computed efficiently from $O(fracln Kepsilon)$ instead of $O(fracln Kepsilon2)$ queries.
We introduce a new technique for lower bounds, which allows us to obtain lower bounds of order $tildeOmega(frac1Kepsilon)$ for any $epsilon leq 1 / (cK4)$.
arXiv Detail & Related papers (2023-04-25T12:42:59Z) - A General Algorithm for Solving Rank-one Matrix Sensing [15.543065204102714]
The goal of matrix sensing is to recover a matrix $A_star in mathbbRn times n$, based on a sequence of measurements.
In this paper, we relax that rank-$k$ assumption and solve a much more general matrix sensing problem.
arXiv Detail & Related papers (2023-03-22T04:07:26Z) - Optimal Query Complexities for Dynamic Trace Estimation [59.032228008383484]
We consider the problem of minimizing the number of matrix-vector queries needed for accurate trace estimation in the dynamic setting where our underlying matrix is changing slowly.
We provide a novel binary tree summation procedure that simultaneously estimates all $m$ traces up to $epsilon$ error with $delta$ failure probability.
Our lower bounds (1) give the first tight bounds for Hutchinson's estimator in the matrix-vector product model with Frobenius norm error even in the static setting, and (2) are the first unconditional lower bounds for dynamic trace estimation.
arXiv Detail & Related papers (2022-09-30T04:15:44Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Unique sparse decomposition of low rank matrices [17.037882881652617]
We find a unique decomposition of a low rank matrixYin mathbbRrtimes n$.
We prove that up to some $Yin mathRrtimes n$ is a sparse-wise decomposition of $Xin mathbbRrtimes n$.
arXiv Detail & Related papers (2021-06-14T20:05:59Z) - Algebraic and geometric structures inside the Birkhoff polytope [0.0]
Birkhoff polytope $mathcalB_d$ consists of all bistochastic matrices of order $d$.
We prove that $mathcalL_d$ and $mathcalF_d$ are star-shaped with respect to the flat matrix.
arXiv Detail & Related papers (2021-01-27T09:51:24Z) - The Average-Case Time Complexity of Certifying the Restricted Isometry
Property [66.65353643599899]
In compressed sensing, the restricted isometry property (RIP) on $M times N$ sensing matrices guarantees efficient reconstruction of sparse vectors.
We investigate the exact average-case time complexity of certifying the RIP property for $Mtimes N$ matrices with i.i.d. $mathcalN(0,1/M)$ entries.
arXiv Detail & Related papers (2020-05-22T16:55:01Z) - Average Case Column Subset Selection for Entrywise $\ell_1$-Norm Loss [76.02734481158458]
It is known that in the worst case, to obtain a good rank-$k$ approximation to a matrix, one needs an arbitrarily large $nOmega(1)$ number of columns.
We show that under certain minimal and realistic distributional settings, it is possible to obtain a $(k/epsilon)$-approximation with a nearly linear running time and poly$(k/epsilon)+O(klog n)$ columns.
This is the first algorithm of any kind for achieving a $(k/epsilon)$-approximation for entrywise
arXiv Detail & Related papers (2020-04-16T22:57:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.