Auto-Regressively Generating Multi-View Consistent Images
- URL: http://arxiv.org/abs/2506.18527v2
- Date: Sun, 13 Jul 2025 04:27:12 GMT
- Title: Auto-Regressively Generating Multi-View Consistent Images
- Authors: JiaKui Hu, Yuxiao Yang, Jialun Liu, Jinbo Wu, Chen Zhao, Yanye Lu,
- Abstract summary: We propose the Multi-View Auto-Regressive (textbfMV-AR) method to generate consistent multi-view images from arbitrary prompts.<n>When generating widely-separated views, MV-AR can utilize all its preceding views to extract effective reference information.<n>Experiments demonstrate the performance and versatility of our MV-AR, which consistently generates consistent multi-view images.
- Score: 10.513203377236744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating multi-view images from human instructions is crucial for 3D content creation. The primary challenges involve maintaining consistency across multiple views and effectively synthesizing shapes and textures under diverse conditions. In this paper, we propose the Multi-View Auto-Regressive (\textbf{MV-AR}) method, which leverages an auto-regressive model to progressively generate consistent multi-view images from arbitrary prompts. Firstly, the next-token-prediction capability of the AR model significantly enhances its effectiveness in facilitating progressive multi-view synthesis. When generating widely-separated views, MV-AR can utilize all its preceding views to extract effective reference information. Subsequently, we propose a unified model that accommodates various prompts via architecture designing and training strategies. To address multiple conditions, we introduce condition injection modules for text, camera pose, image, and shape. To manage multi-modal conditions simultaneously, a progressive training strategy is employed. This strategy initially adopts the text-to-multi-view (t2mv) model as a baseline to enhance the development of a comprehensive X-to-multi-view (X2mv) model through the randomly dropping and combining conditions. Finally, to alleviate the overfitting problem caused by limited high-quality data, we propose the ``Shuffle View" data augmentation technique, thus significantly expanding the training data by several magnitudes. Experiments demonstrate the performance and versatility of our MV-AR, which consistently generates consistent multi-view images across a range of conditions and performs on par with leading diffusion-based multi-view image generation models. The code and models are released at https://github.com/MILab-PKU/MVAR.
Related papers
- MENTOR: Efficient Multimodal-Conditioned Tuning for Autoregressive Vision Generation Models [30.494968865008513]
Recent text-to-image models struggle with precise visual control, balancing multimodal inputs, and requiring extensive training for complex image generation.<n>We propose MENTOR, a novel framework for efficient Multimodal-conditioned Tuning for Autoregressive multimodal image generation.<n>Our method delivers superior image reconstruction fidelity, broad task adaptability, and improved training efficiency compared to diffusion-based methods.
arXiv Detail & Related papers (2025-07-13T10:52:59Z) - Mogao: An Omni Foundation Model for Interleaved Multi-Modal Generation [54.588082888166504]
We present Mogao, a unified framework that enables interleaved multi-modal generation through a causal approach.<n>Mogoo integrates a set of key technical improvements in architecture design, including a deep-fusion design, dual vision encoders, interleaved rotary position embeddings, and multi-modal classifier-free guidance.<n>Experiments show that Mogao achieves state-of-the-art performance in multi-modal understanding and text-to-image generation, but also excels in producing high-quality, coherent interleaved outputs.
arXiv Detail & Related papers (2025-05-08T17:58:57Z) - Unified Multimodal Discrete Diffusion [78.48930545306654]
Multimodal generative models that can understand and generate across multiple modalities are dominated by autoregressive (AR) approaches.<n>We explore discrete diffusion models as a unified generative formulation in the joint text and image domain.<n>We present the first Unified Multimodal Discrete Diffusion (UniDisc) model which is capable of jointly understanding and generating text and images.
arXiv Detail & Related papers (2025-03-26T17:59:51Z) - Flex3D: Feed-Forward 3D Generation with Flexible Reconstruction Model and Input View Curation [61.040832373015014]
We propose Flex3D, a novel framework for generating high-quality 3D content from text, single images, or sparse view images.<n>We employ a fine-tuned multi-view image diffusion model and a video diffusion model to generate a pool of candidate views, enabling a rich representation of the target 3D object.<n>In the second stage, the curated views are fed into a Flexible Reconstruction Model (FlexRM), built upon a transformer architecture that can effectively process an arbitrary number of inputs.
arXiv Detail & Related papers (2024-10-01T17:29:43Z) - Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining [49.04935506942202]
Lumina-mGPT is a family of multimodal autoregressive models capable of various vision and language tasks.<n>By initializing from multimodal Generative PreTraining (mGPT), we demonstrate that decoder-only Autoregressive (AR) model can achieve image generation performance comparable to modern diffusion models.
arXiv Detail & Related papers (2024-08-05T17:46:53Z) - Vivid-ZOO: Multi-View Video Generation with Diffusion Model [76.96449336578286]
New challenges lie in the lack of massive captioned multi-view videos and the complexity of modeling such multi-dimensional distribution.
We propose a novel diffusion-based pipeline that generates high-quality multi-view videos centered around a dynamic 3D object from text.
arXiv Detail & Related papers (2024-06-12T21:44:04Z) - Bootstrap3D: Improving Multi-view Diffusion Model with Synthetic Data [80.92268916571712]
A critical bottleneck is the scarcity of high-quality 3D objects with detailed captions.
We propose Bootstrap3D, a novel framework that automatically generates an arbitrary quantity of multi-view images.
We have generated 1 million high-quality synthetic multi-view images with dense descriptive captions.
arXiv Detail & Related papers (2024-05-31T17:59:56Z) - Many-to-many Image Generation with Auto-regressive Diffusion Models [59.5041405824704]
This paper introduces a domain-general framework for many-to-many image generation, capable of producing interrelated image series from a given set of images.
We present MIS, a novel large-scale multi-image dataset, containing 12M synthetic multi-image samples, each with 25 interconnected images.
We learn M2M, an autoregressive model for many-to-many generation, where each image is modeled within a diffusion framework.
arXiv Detail & Related papers (2024-04-03T23:20:40Z) - VideoMV: Consistent Multi-View Generation Based on Large Video Generative Model [34.35449902855767]
Two fundamental questions are what data we use for training and how to ensure multi-view consistency.
We propose a dense consistent multi-view generation model that is fine-tuned from off-the-shelf video generative models.
Our approach can generate 24 dense views and converges much faster in training than state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-18T17:48:15Z) - DrivingDiffusion: Layout-Guided multi-view driving scene video
generation with latent diffusion model [19.288610627281102]
We propose DrivingDiffusion to generate realistic multi-view videos controlled by 3D layout.
Our model can generate large-scale realistic multi-camera driving videos in complex urban scenes.
arXiv Detail & Related papers (2023-10-11T18:00:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.