Focus Your Attention: Towards Data-Intuitive Lightweight Vision Transformers
- URL: http://arxiv.org/abs/2506.18791v1
- Date: Mon, 23 Jun 2025 16:00:57 GMT
- Title: Focus Your Attention: Towards Data-Intuitive Lightweight Vision Transformers
- Authors: Suyash Gaurav, Muhammad Farhan Humayun, Jukka Heikkonen, Jatin Chaudhary,
- Abstract summary: Super-Pixel Based Patch Pooling (SPPP) technique generates context-aware, semantically rich, patch embeddings to reduce architectural complexity and improve efficiency.<n>We introduce the Light Latent Attention (LLA) module in our pipeline by integrating latent tokens into the attention mechanism.<n>Our approach adaptively modulates the cross-attention process to focus on informative regions while maintaining the global semantic structure.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution of Vision Transformers has led to their widespread adaptation to different domains. Despite large-scale success, there remain significant challenges including their reliance on extensive computational and memory resources for pre-training on huge datasets as well as difficulties in task-specific transfer learning. These limitations coupled with energy inefficiencies mainly arise due to the computation-intensive self-attention mechanism. To address these issues, we propose a novel Super-Pixel Based Patch Pooling (SPPP) technique that generates context-aware, semantically rich, patch embeddings to effectively reduce the architectural complexity and improve efficiency. Additionally, we introduce the Light Latent Attention (LLA) module in our pipeline by integrating latent tokens into the attention mechanism allowing cross-attention operations to significantly reduce the time and space complexity of the attention module. By leveraging the data-intuitive patch embeddings coupled with dynamic positional encodings, our approach adaptively modulates the cross-attention process to focus on informative regions while maintaining the global semantic structure. This targeted attention improves training efficiency and accelerates convergence. Notably, the SPPP module is lightweight and can be easily integrated into existing transformer architectures. Extensive experiments demonstrate that our proposed architecture provides significant improvements in terms of computational efficiency while achieving comparable results with the state-of-the-art approaches, highlighting its potential for energy-efficient transformers suitable for edge deployment. (The code is available on our GitHub repository: https://github.com/zser092/Focused-Attention-ViT).
Related papers
- Is Attention Required for Transformer Inference? Explore Function-preserving Attention Replacement [13.38679135071682]
We propose a Function-preserving Attention Replacement framework that replaces all attention blocks in pretrained transformers with learnable sequence-to-sequence modules.<n>We validate FAR on the DeiT vision transformer family and demonstrate that it matches the accuracy of the original models on ImageNet and multiple downstream tasks with reduced parameters and latency.
arXiv Detail & Related papers (2025-05-24T02:23:46Z) - Breaking Complexity Barriers: High-Resolution Image Restoration with Rank Enhanced Linear Attention [54.42902794496325]
Linear attention, a variant of softmax attention, demonstrates promise in global context modeling.<n>We propose Rank Enhanced Linear Attention (RELA), a simple yet effective method that enriches feature representations by integrating a lightweight depthwise convolution.<n>Building upon RELA, we propose an efficient and effective image restoration Transformer, named LAformer.
arXiv Detail & Related papers (2025-05-22T02:57:23Z) - ContextFormer: Redefining Efficiency in Semantic Segmentation [48.81126061219231]
Convolutional methods, although capturing local dependencies well, struggle with long-range relationships.<n>Vision Transformers (ViTs) excel in global context capture but are hindered by high computational demands.<n>We propose ContextFormer, a hybrid framework leveraging the strengths of CNNs and ViTs in the bottleneck to balance efficiency, accuracy, and robustness for real-time semantic segmentation.
arXiv Detail & Related papers (2025-01-31T16:11:04Z) - Unifying Dimensions: A Linear Adaptive Approach to Lightweight Image Super-Resolution [6.857919231112562]
Window-based transformers have demonstrated outstanding performance in super-resolution tasks.
They exhibit higher computational complexity and inference latency than convolutional neural networks.
We construct a convolution-based Transformer framework named the linear adaptive mixer network (LAMNet)
arXiv Detail & Related papers (2024-09-26T07:24:09Z) - Skip-Layer Attention: Bridging Abstract and Detailed Dependencies in Transformers [56.264673865476986]
This paper introduces Skip-Layer Attention (SLA) to enhance Transformer models.
SLA improves the model's ability to capture dependencies between high-level abstract features and low-level details.
Our implementation extends the Transformer's functionality by enabling queries in a given layer to interact with keys and values from both the current layer and one preceding layer.
arXiv Detail & Related papers (2024-06-17T07:24:38Z) - EfficientMorph: Parameter-Efficient Transformer-Based Architecture for 3D Image Registration [1.741980945827445]
We present name, a transformer-based architecture for unsupervised 3D image registration.<n>name balances local and global attention in 3D volumes through a plane-based attention mechanism and employs a Hi-Res tokenization strategy with merging operations.
arXiv Detail & Related papers (2024-03-16T22:01:55Z) - DAT++: Spatially Dynamic Vision Transformer with Deformable Attention [87.41016963608067]
We present Deformable Attention Transformer ( DAT++), a vision backbone efficient and effective for visual recognition.
DAT++ achieves state-of-the-art results on various visual recognition benchmarks, with 85.9% ImageNet accuracy, 54.5 and 47.0 MS-COCO instance segmentation mAP, and 51.5 ADE20K semantic segmentation mIoU.
arXiv Detail & Related papers (2023-09-04T08:26:47Z) - FLatten Transformer: Vision Transformer using Focused Linear Attention [80.61335173752146]
Linear attention offers a much more efficient alternative with its linear complexity.
Current linear attention approaches either suffer from significant performance degradation or introduce additional computation overhead.
We propose a novel Focused Linear Attention module to achieve both high efficiency and expressiveness.
arXiv Detail & Related papers (2023-08-01T10:37:12Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.