MinD: Unified Visual Imagination and Control via Hierarchical World Models
- URL: http://arxiv.org/abs/2506.18897v1
- Date: Mon, 23 Jun 2025 17:59:06 GMT
- Title: MinD: Unified Visual Imagination and Control via Hierarchical World Models
- Authors: Xiaowei Chi, Kuangzhi Ge, Jiaming Liu, Siyuan Zhou, Peidong Jia, Zichen He, Yuzhen Liu, Tingguang Li, Lei Han, Sirui Han, Shanghang Zhang, Yike Guo,
- Abstract summary: Video generation models (VGMs) offer a promising pathway for unified world modeling in robotics.<n>Manipulate in Dream (MinD) is a hierarchical diffusion-based world model framework that employs a dual-system design for vision-language manipulation.<n>MinD executes VGM at low frequencies to extract video prediction features, while leveraging a high-frequency diffusion policy for real-time interaction.
- Score: 32.08769443927576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video generation models (VGMs) offer a promising pathway for unified world modeling in robotics by integrating simulation, prediction, and manipulation. However, their practical application remains limited due to (1) slowgeneration speed, which limits real-time interaction, and (2) poor consistency between imagined videos and executable actions. To address these challenges, we propose Manipulate in Dream (MinD), a hierarchical diffusion-based world model framework that employs a dual-system design for vision-language manipulation. MinD executes VGM at low frequencies to extract video prediction features, while leveraging a high-frequency diffusion policy for real-time interaction. This architecture enables low-latency, closed-loop control in manipulation with coherent visual guidance. To better coordinate the two systems, we introduce a video-action diffusion matching module (DiffMatcher), with a novel co-training strategy that uses separate schedulers for each diffusion model. Specifically, we introduce a diffusion-forcing mechanism to DiffMatcher that aligns their intermediate representations during training, helping the fast action model better understand video-based predictions. Beyond manipulation, MinD also functions as a world simulator, reliably predicting task success or failure in latent space before execution. Trustworthy analysis further shows that VGMs can preemptively evaluate task feasibility and mitigate risks. Extensive experiments across multiple benchmarks demonstrate that MinD achieves state-of-the-art manipulation (63%+) in RL-Bench, advancing the frontier of unified world modeling in robotics.
Related papers
- Towards Universal Modal Tracking with Online Dense Temporal Token Learning [66.83607018706519]
We propose a universal video-level modality-awareness tracking model with online dense temporal token learning.<n>We expand the model's inputs to a video sequence level, aiming to see a richer video context from a near-global perspective.
arXiv Detail & Related papers (2025-07-27T08:47:42Z) - DreamVLA: A Vision-Language-Action Model Dreamed with Comprehensive World Knowledge [56.3802428957899]
We propose DreamVLA, a novel VLA framework that integrates comprehensive world knowledge forecasting to enable inverse dynamics modeling.<n>DreamVLA introduces a dynamic-region-guided world knowledge prediction, integrated with the spatial and semantic cues, which provide compact yet comprehensive representations for action planning.<n>Experiments on both real-world and simulation environments demonstrate that DreamVLA achieves 76.7% success rate on real robot tasks.
arXiv Detail & Related papers (2025-07-06T16:14:29Z) - Epona: Autoregressive Diffusion World Model for Autonomous Driving [39.389981627403316]
Existing video diffusion models struggle with flexible-length, long-horizon predictions and integrating trajectory planning.<n>This is because conventional video diffusion models rely on global joint distribution modeling of fixed-length frame sequences.<n>We propose Epona, an autoregressive world model that enables localized distribution modeling.
arXiv Detail & Related papers (2025-06-30T17:56:35Z) - ManiGaussian++: General Robotic Bimanual Manipulation with Hierarchical Gaussian World Model [52.02220087880269]
We propose an extension of ManiGaussian framework that improves bimanual manipulation by digesting multi-task scene dynamics through a hierarchical world model.<n>Our method significantly outperforms the current state-of-the-art bimanual manipulation techniques by an improvement of 20.2% in 10 simulated tasks, and 60% success rate on average in 9 challenging real-world tasks.
arXiv Detail & Related papers (2025-06-24T17:59:06Z) - Consistent World Models via Foresight Diffusion [56.45012929930605]
We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability.<n>We propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising.
arXiv Detail & Related papers (2025-05-22T10:01:59Z) - Vid2World: Crafting Video Diffusion Models to Interactive World Models [38.270098691244314]
Vid2World is a general approach for leveraging and transferring pre-trained video diffusion models into interactive world models.<n>It performs casualization of a pre-trained video diffusion model by crafting its architecture and training objective to enable autoregressive generation.<n>It introduces a causal action guidance mechanism to enhance action controllability in the resulting interactive world model.
arXiv Detail & Related papers (2025-05-20T13:41:45Z) - Unified World Models: Coupling Video and Action Diffusion for Pretraining on Large Robotic Datasets [7.667819384855409]
We present Unified World Models (UWM), a framework that allows for leveraging both video and action data for policy learning.<n>By controlling each diffusion timestep, UWM can flexibly represent a policy, a forward dynamics, an inverse dynamics, and a video generator.<n>Our results suggest that UWM offers a promising step toward harnessing large, heterogeneous datasets for scalable robot learning.
arXiv Detail & Related papers (2025-04-03T17:38:59Z) - HybridVLA: Collaborative Diffusion and Autoregression in a Unified Vision-Language-Action Model [54.64088247291416]
A fundamental objective of manipulation policy design is to endow robots to comprehend human instructions, reason about scene cues, and execute generalized actions in dynamic environments.<n>Recent autoregressive vision-language-action (VLA) methods inherit common-sense reasoning capabilities from vision-language models (VLMs) for next action-token prediction.<n>We introduce HybridVLA, a unified framework that absorbs the continuous nature of diffusion-based actions and the contextual reasoning of autoregression.
arXiv Detail & Related papers (2025-03-13T17:59:52Z) - HAMSTER: Hierarchical Action Models For Open-World Robot Manipulation [54.03004125910057]
We show that hierarchical vision-language-action models can be more effective in utilizing off-domain data than standard monolithic VLA models.<n>We show that, with the hierarchical design, the high-level VLM can transfer across significant domain gaps between the off-domain finetuning data and real-robot testing scenarios.
arXiv Detail & Related papers (2025-02-08T07:50:22Z) - IRASim: A Fine-Grained World Model for Robot Manipulation [24.591694756757278]
We present IRASim, a novel world model capable of generating videos with fine-grained robot-object interaction details.<n>We train a diffusion transformer and introduce a novel frame-level action-conditioning module within each transformer block to explicitly model and strengthen the action-frame alignment.
arXiv Detail & Related papers (2024-06-20T17:50:16Z) - Copilot4D: Learning Unsupervised World Models for Autonomous Driving via Discrete Diffusion [36.321494200830244]
Copilot4D is a novel world modeling approach that first tokenizes sensor observations with VQVAE, then predicts the future via discrete diffusion.
Our results demonstrate that discrete diffusion on tokenized agent experience can unlock the power of GPT-like unsupervised learning for robotics.
arXiv Detail & Related papers (2023-11-02T06:21:56Z) - Interactive Character Control with Auto-Regressive Motion Diffusion Models [18.727066177880708]
We propose A-MDM (Auto-regressive Motion Diffusion Model) for real-time motion synthesis.
Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on previous frame.
We introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning.
arXiv Detail & Related papers (2023-06-01T07:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.