IRASim: A Fine-Grained World Model for Robot Manipulation
- URL: http://arxiv.org/abs/2406.14540v2
- Date: Tue, 29 Jul 2025 16:48:03 GMT
- Title: IRASim: A Fine-Grained World Model for Robot Manipulation
- Authors: Fangqi Zhu, Hongtao Wu, Song Guo, Yuxiao Liu, Chilam Cheang, Tao Kong,
- Abstract summary: We present IRASim, a novel world model capable of generating videos with fine-grained robot-object interaction details.<n>We train a diffusion transformer and introduce a novel frame-level action-conditioning module within each transformer block to explicitly model and strengthen the action-frame alignment.
- Score: 24.591694756757278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: World models allow autonomous agents to plan and explore by predicting the visual outcomes of different actions. However, for robot manipulation, it is challenging to accurately model the fine-grained robot-object interaction within the visual space using existing methods which overlooks precise alignment between each action and the corresponding frame. In this paper, we present IRASim, a novel world model capable of generating videos with fine-grained robot-object interaction details, conditioned on historical observations and robot action trajectories. We train a diffusion transformer and introduce a novel frame-level action-conditioning module within each transformer block to explicitly model and strengthen the action-frame alignment. Extensive experiments show that: (1) the quality of the videos generated by our method surpasses all the baseline methods and scales effectively with increased model size and computation; (2) policy evaluations using IRASim exhibit a strong correlation with those using the ground-truth simulator, highlighting its potential to accelerate real-world policy evaluation; (3) testing-time scaling through model-based planning with IRASim significantly enhances policy performance, as evidenced by an improvement in the IoU metric on the Push-T benchmark from 0.637 to 0.961; (4) IRASim provides flexible action controllability, allowing virtual robotic arms in datasets to be controlled via a keyboard or VR controller.
Related papers
- cVLA: Towards Efficient Camera-Space VLAs [26.781510474119845]
Vision-Language-Action (VLA) models offer a compelling framework for tackling complex robotic manipulation tasks.<n>We propose a novel VLA approach that leverages the competitive performance of Vision Language Models on 2D images.<n>Our model predicts trajectory waypoints, making it both more efficient to train and robot embodiment.
arXiv Detail & Related papers (2025-07-02T22:56:41Z) - ORV: 4D Occupancy-centric Robot Video Generation [33.360345403049685]
Acquiring real-world robotic simulation data through teleoperation is notoriously time-consuming and labor-intensive.<n>We propose ORV, an Occupancy-centric Robot Video generation framework, which utilizes 4D semantic occupancy sequences as a fine-grained representation.<n>By leveraging occupancy-based representations, ORV enables seamless translation of simulation data into photorealistic robot videos, while ensuring high temporal consistency and precise controllability.
arXiv Detail & Related papers (2025-06-03T17:00:32Z) - Evaluating Robot Policies in a World Model [54.874926065292904]
We investigate World-model-based Policy Evaluation (WPE)<n>WPE achieves high fidelity in mimicing robot arm movements as in real videos.<n>We show that WPE can serve as a starting point for evaluating robot policies before real-world deployment.
arXiv Detail & Related papers (2025-05-31T15:51:56Z) - RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins [33.78621017138685]
RoboTwin is a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets.<n>Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios.<n>Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance.
arXiv Detail & Related papers (2025-04-17T16:14:24Z) - VidBot: Learning Generalizable 3D Actions from In-the-Wild 2D Human Videos for Zero-Shot Robotic Manipulation [53.63540587160549]
VidBot is a framework enabling zero-shot robotic manipulation using learned 3D affordance from in-the-wild monocular RGB-only human videos.
VidBot paves the way for leveraging everyday human videos to make robot learning more scalable.
arXiv Detail & Related papers (2025-03-10T10:04:58Z) - Pre-Trained Video Generative Models as World Simulators [59.546627730477454]
We propose Dynamic World Simulation (DWS) to transform pre-trained video generative models into controllable world simulators.<n>To achieve precise alignment between conditioned actions and generated visual changes, we introduce a lightweight, universal action-conditioned module.<n> Experiments demonstrate that DWS can be versatilely applied to both diffusion and autoregressive transformer models.
arXiv Detail & Related papers (2025-02-10T14:49:09Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer.<n>By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - Simulation-Aided Policy Tuning for Black-Box Robot Learning [47.83474891747279]
We present a novel black-box policy search algorithm focused on data-efficient policy improvements.
The algorithm learns directly on the robot and treats simulation as an additional information source to speed up the learning process.
We show fast and successful task learning on a robot manipulator with the aid of an imperfect simulator.
arXiv Detail & Related papers (2024-11-21T15:52:23Z) - VidMan: Exploiting Implicit Dynamics from Video Diffusion Model for Effective Robot Manipulation [79.00294932026266]
VidMan is a novel framework that employs a two-stage training mechanism to enhance stability and improve data utilization efficiency.
Our framework outperforms state-of-the-art baseline model GR-1 on the CALVIN benchmark, achieving a 11.7% relative improvement, and demonstrates over 9% precision gains on the OXE small-scale dataset.
arXiv Detail & Related papers (2024-11-14T03:13:26Z) - Generalized Robot Learning Framework [10.03174544844559]
We present a low-cost robot learning framework that is both easily reproducible and transferable to various robots and environments.
We demonstrate that deployable imitation learning can be successfully applied even to industrial-grade robots.
arXiv Detail & Related papers (2024-09-18T15:34:31Z) - RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins (early version) [25.298789781487084]
RoboTwin is a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets.<n>Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios.<n>Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance.
arXiv Detail & Related papers (2024-09-04T17:59:52Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - SCENEREPLICA: Benchmarking Real-World Robot Manipulation by Creating
Replicable Scenes [5.80109297939618]
We present a new reproducible benchmark for evaluating robot manipulation in the real world, specifically focusing on pick-and-place.
Our benchmark uses the YCB objects, a commonly used dataset in the robotics community, to ensure that our results are comparable to other studies.
arXiv Detail & Related papers (2023-06-27T16:59:15Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
We present a self-supervised sensorimotor pre-training approach for robotics.
Our model, called RPT, is a Transformer that operates on sequences of sensorimotor tokens.
We find that sensorimotor pre-training consistently outperforms training from scratch, has favorable scaling properties, and enables transfer across different tasks, environments, and robots.
arXiv Detail & Related papers (2023-06-16T17:58:10Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - DayDreamer: World Models for Physical Robot Learning [142.11031132529524]
Deep reinforcement learning is a common approach to robot learning but requires a large amount of trial and error to learn.
Many advances in robot learning rely on simulators.
In this paper, we apply Dreamer to 4 robots to learn online and directly in the real world, without simulators.
arXiv Detail & Related papers (2022-06-28T17:44:48Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - Back to Reality for Imitation Learning [8.57914821832517]
Imitation learning, and robot learning in general, emerged due to breakthroughs in machine learning, rather than breakthroughs in robotics.
We believe that a better metric for real-world robot learning is time efficiency, which better models the true cost to humans.
arXiv Detail & Related papers (2021-11-25T02:03:52Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - One to Many: Adaptive Instrument Segmentation via Meta Learning and
Dynamic Online Adaptation in Robotic Surgical Video [71.43912903508765]
MDAL is a dynamic online adaptive learning scheme for instrument segmentation in robot-assisted surgery.
It learns the general knowledge of instruments and the fast adaptation ability through the video-specific meta-learning paradigm.
It outperforms other state-of-the-art methods on two datasets.
arXiv Detail & Related papers (2021-03-24T05:02:18Z) - robo-gym -- An Open Source Toolkit for Distributed Deep Reinforcement
Learning on Real and Simulated Robots [0.5161531917413708]
We propose an open source toolkit: robo-gym to increase the use of Deep Reinforcement Learning with real robots.
We demonstrate a unified setup for simulation and real environments which enables a seamless transfer from training in simulation to application on the robot.
We showcase the capabilities and the effectiveness of the framework with two real world applications featuring industrial robots.
arXiv Detail & Related papers (2020-07-06T13:51:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.