MemeMind: A Large-Scale Multimodal Dataset with Chain-of-Thought Reasoning for Harmful Meme Detection
- URL: http://arxiv.org/abs/2506.18919v1
- Date: Sun, 15 Jun 2025 13:45:30 GMT
- Title: MemeMind: A Large-Scale Multimodal Dataset with Chain-of-Thought Reasoning for Harmful Meme Detection
- Authors: Hexiang Gu, Qifan Yu, Saihui Hou, Zhiqin Fang, Huijia Wu, Zhaofeng He,
- Abstract summary: Harmful memes pose significant challenges for automated detection due to implicit semantics and complex multimodal interactions.<n>MemeMind is a novel dataset featuring scientifically rigorous standards, large scale, diversity, bilingual support (Chinese and English), and detailed Chain-of-Thought (CoT) annotations.<n>We propose an innovative detection framework, MemeGuard, which effectively integrates multimodal information with reasoning process modeling.
- Score: 4.09109557328609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid development of social media has intensified the spread of harmful content. Harmful memes, which integrate both images and text, pose significant challenges for automated detection due to their implicit semantics and complex multimodal interactions. Although existing research has made progress in detection accuracy and interpretability, the lack of a systematic, large-scale, diverse, and highly explainable dataset continues to hinder further advancement in this field. To address this gap, we introduce MemeMind, a novel dataset featuring scientifically rigorous standards, large scale, diversity, bilingual support (Chinese and English), and detailed Chain-of-Thought (CoT) annotations. MemeMind fills critical gaps in current datasets by offering comprehensive labeling and explicit reasoning traces, thereby providing a solid foundation for enhancing harmful meme detection. In addition, we propose an innovative detection framework, MemeGuard, which effectively integrates multimodal information with reasoning process modeling, significantly improving models' ability to understand and identify harmful memes. Extensive experiments conducted on the MemeMind dataset demonstrate that MemeGuard consistently outperforms existing state-of-the-art methods in harmful meme detection tasks.
Related papers
- Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Detecting Harmful Memes with Decoupled Understanding and Guided CoT Reasoning [26.546646866501735]
We introduce U-CoT+, a novel framework for harmful meme detection.<n>We first develop a high-fidelity meme-to-text pipeline that converts visual memes into detail-preserving textual descriptions.<n>This design decouples meme interpretation from meme classification, thus avoiding immediate reasoning over complex raw visual content.
arXiv Detail & Related papers (2025-06-10T06:10:45Z) - Do We Really Need Curated Malicious Data for Safety Alignment in Multi-modal Large Language Models? [83.53005932513155]
Multi-modal large language models (MLLMs) have made significant progress, yet their safety alignment remains limited.<n>We propose finetuning MLLMs on a small set of benign instruct-following data with responses replaced by simple, clear rejection sentences.
arXiv Detail & Related papers (2025-04-14T09:03:51Z) - MIRAGE: Multimodal Immersive Reasoning and Guided Exploration for Red-Team Jailbreak Attacks [85.3303135160762]
MIRAGE is a novel framework that exploits narrative-driven context and role immersion to circumvent safety mechanisms in Multimodal Large Language Models.<n>It achieves state-of-the-art performance, improving attack success rates by up to 17.5% over the best baselines.<n>We demonstrate that role immersion and structured semantic reconstruction can activate inherent model biases, facilitating the model's spontaneous violation of ethical safeguards.
arXiv Detail & Related papers (2025-03-24T20:38:42Z) - Multi-Granular Multimodal Clue Fusion for Meme Understanding [30.697862544992386]
multimodal meme understanding (MMU) task has been garnering increasing attention.<n>MMU aims to explore and comprehend the meanings of memes by performing tasks such as metaphor recognition, sentiment analysis, intention detection, and offensiveness detection.<n>We propose a multi-granular multimodal clue fusion model (MGMCF) to advance MMU.
arXiv Detail & Related papers (2025-03-16T16:16:53Z) - MemeIntel: Explainable Detection of Propagandistic and Hateful Memes [7.844829622785847]
We introduce MemeIntel, an explanation-enhanced dataset for propaganda memes in Arabic and hateful memes in English.<n>We propose a multi-stage optimization approach and train Vision-Language Models (VLMs)<n>Our results demonstrate that this approach significantly improves performance over the base model for both textbflabel detection and explanation generation.
arXiv Detail & Related papers (2025-02-23T15:35:48Z) - RADAR: Robust Two-stage Modality-incomplete Industrial Anomaly Detection [61.71770293720491]
We propose a novel two-stage Robust modAlity-imcomplete fusing and Detecting frAmewoRk, abbreviated as RADAR.
Our bootstrapping philosophy is to enhance two stages in MIIAD, improving the robustness of the Multimodal Transformer.
Our experimental results demonstrate that the proposed RADAR significantly surpasses conventional MIAD methods in terms of effectiveness and robustness.
arXiv Detail & Related papers (2024-10-02T16:47:55Z) - HateSieve: A Contrastive Learning Framework for Detecting and Segmenting Hateful Content in Multimodal Memes [8.97062933976566]
textscHateSieve is a framework designed to enhance the detection and segmentation of hateful elements in memes.<n>textscHateSieve features a novel Contrastive Meme Generator that creates semantically paired memes.<n> Empirical experiments on the Hateful Meme show that textscHateSieve not only surpasses existing LMMs in performance with fewer trainable parameters but also offers a robust mechanism for precisely identifying and isolating hateful content.
arXiv Detail & Related papers (2024-08-11T14:56:06Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - A Multimodal Framework for the Detection of Hateful Memes [16.7604156703965]
We aim to develop a framework for the detection of hateful memes.
We show the effectiveness of upsampling of contrastive examples to encourage multimodality and ensemble learning.
Our best approach comprises an ensemble of UNITER-based models and achieves an AUROC score of 80.53, placing us 4th on phase 2 of the 2020 Hateful Memes Challenge organized by Facebook.
arXiv Detail & Related papers (2020-12-23T18:37:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.