MemeIntel: Explainable Detection of Propagandistic and Hateful Memes
- URL: http://arxiv.org/abs/2502.16612v1
- Date: Sun, 23 Feb 2025 15:35:48 GMT
- Title: MemeIntel: Explainable Detection of Propagandistic and Hateful Memes
- Authors: Mohamed Bayan Kmainasi, Abul Hasnat, Md Arid Hasan, Ali Ezzat Shahroor, Firoj Alam,
- Abstract summary: We introduce MemeIntel, an explanation-enhanced dataset for propaganda memes in Arabic and hateful memes in English.<n>We propose a multi-stage optimization approach and train Vision-Language Models (VLMs)<n>Our results demonstrate that this approach significantly improves performance over the base model for both textbflabel detection and explanation generation.
- Score: 7.844829622785847
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The proliferation of multimodal content on social media presents significant challenges in understanding and moderating complex, context-dependent issues such as misinformation, hate speech, and propaganda. While efforts have been made to develop resources and propose new methods for automatic detection, limited attention has been given to label detection and the generation of explanation-based rationales for predicted labels. To address this challenge, we introduce MemeIntel, an explanation-enhanced dataset for propaganda memes in Arabic and hateful memes in English, making it the first large-scale resource for these tasks. To solve these tasks, we propose a multi-stage optimization approach and train Vision-Language Models (VLMs). Our results demonstrate that this approach significantly improves performance over the base model for both \textbf{label detection} and explanation generation, outperforming the current state-of-the-art with an absolute improvement of ~3% on ArMeme and ~7% on Hateful Memes. For reproducibility and future research, we aim to make the MemeIntel dataset and experimental resources publicly available.
Related papers
- Demystifying Hateful Content: Leveraging Large Multimodal Models for Hateful Meme Detection with Explainable Decisions [4.649093665157263]
In this paper, we introduce IntMeme, a novel framework that leverages Large Multimodal Models (LMMs) for hateful meme classification with explainable decisions.<n>IntMeme addresses the dual challenges of improving both accuracy and explainability in meme moderation.<n>Our approach addresses the opacity and misclassification issues associated with PT-VLMs, optimizing the use of LMMs for hateful meme detection.
arXiv Detail & Related papers (2025-02-16T10:45:40Z) - REO-VLM: Transforming VLM to Meet Regression Challenges in Earth Observation [58.91579272882073]
This paper introduces a novel benchmark dataset, called textbfREO-Instruct to unify regression and generation tasks specifically for the Earth Observation domain.
We develop textbfREO-VLM, a groundbreaking model that seamlessly integrates regression capabilities with traditional generative functions.
arXiv Detail & Related papers (2024-12-21T11:17:15Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
We propose MMEvol, a novel multimodal instruction data evolution framework.<n>MMEvol iteratively improves data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution.<n>Our approach reaches state-of-the-art (SOTA) performance in nine tasks using significantly less data compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-09T17:44:00Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
We introduce a straightforward yet effective method for detecting memorized prompts by inspecting the magnitude of text-conditional predictions.
Our proposed method seamlessly integrates without disrupting sampling algorithms, and delivers high accuracy even at the first generation step.
Building on our detection strategy, we unveil an explainable approach that shows the contribution of individual words or tokens to memorization.
arXiv Detail & Related papers (2024-07-31T16:13:29Z) - XMeCap: Meme Caption Generation with Sub-Image Adaptability [53.2509590113364]
Humor, deeply rooted in societal meanings and cultural details, poses a unique challenge for machines.
We introduce the textscXMeCap framework, which adopts supervised fine-tuning and reinforcement learning.
textscXMeCap achieves an average evaluation score of 75.85 for single-image memes and 66.32 for multi-image memes, outperforming the best baseline by 3.71% and 4.82%, respectively.
arXiv Detail & Related papers (2024-07-24T10:51:46Z) - MemeMQA: Multimodal Question Answering for Memes via Rationale-Based Inferencing [53.30190591805432]
We introduce MemeMQA, a multimodal question-answering framework to solicit accurate responses to structured questions.
We also propose ARSENAL, a novel two-stage multimodal framework to address MemeMQA.
arXiv Detail & Related papers (2024-05-18T07:44:41Z) - Meme-ingful Analysis: Enhanced Understanding of Cyberbullying in Memes
Through Multimodal Explanations [48.82168723932981]
We introduce em MultiBully-Ex, the first benchmark dataset for multimodal explanation from code-mixed cyberbullying memes.
A Contrastive Language-Image Pretraining (CLIP) approach has been proposed for visual and textual explanation of a meme.
arXiv Detail & Related papers (2024-01-18T11:24:30Z) - SemiMemes: A Semi-supervised Learning Approach for Multimodal Memes
Analysis [0.0]
SemiMemes is a novel training method that combines auto-encoder and classification task to make use of the resourceful unlabeled data.
This research proposes a multimodal semi-supervised learning approach that outperforms other multimodal semi-supervised learning and supervised learning state-of-the-art models.
arXiv Detail & Related papers (2023-03-31T11:22:03Z) - The Hateful Memes Challenge Next Move [0.0]
Images embedded with text, such as hateful memes, are hard to classify using unimodal reasoning when difficult examples, such as benign confounders, are incorporated into the data set.
We attempt to generate more labeled memes in addition to the Hateful Memes data set from Facebook AI, based on the framework of a winning team from the Hateful Meme Challenge.
We find that the semi-supervised learning task on unlabeled data required human intervention and filtering and that adding a limited amount of new data yields no extra classification performance.
arXiv Detail & Related papers (2022-12-13T15:37:53Z) - A Multimodal Framework for the Detection of Hateful Memes [16.7604156703965]
We aim to develop a framework for the detection of hateful memes.
We show the effectiveness of upsampling of contrastive examples to encourage multimodality and ensemble learning.
Our best approach comprises an ensemble of UNITER-based models and achieves an AUROC score of 80.53, placing us 4th on phase 2 of the 2020 Hateful Memes Challenge organized by Facebook.
arXiv Detail & Related papers (2020-12-23T18:37:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.