論文の概要: Signal Use and Emergent Cooperation
- arxiv url: http://arxiv.org/abs/2506.18920v1
- Date: Mon, 16 Jun 2025 20:24:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.280746
- Title: Signal Use and Emergent Cooperation
- Title(参考訳): 信号利用と創発的協力
- Authors: Michael Williams,
- Abstract要約: 我々は、自律的なエージェントが、部族に組織され、コミュニケーション信号を使って彼らの活動を調整し、集団的効率を高める方法を示す。
本研究は、これらのエージェント集団における文化の自己組織化と、コミュニケーション戦略の変化が彼らの適合性と協力にどのように影響するかに焦点を当てる。
- 参考スコア(独自算出の注目度): 0.5633271155312536
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we investigate how autonomous agents, organized into tribes, learn to use communication signals to coordinate their activities and enhance their collective efficiency. Using the NEC-DAC (Neurally Encoded Culture - Distributed Autonomous Communicators) system, where each agent is equipped with its own neural network for decision-making, we demonstrate how these agents develop a shared behavioral system -- akin to a culture -- through learning and signalling. Our research focuses on the self-organization of culture within these tribes of agents and how varying communication strategies impact their fitness and cooperation. By analyzing different social structures, such as authority hierarchies, we show that the culture of cooperation significantly influences the tribe's performance. Furthermore, we explore how signals not only facilitate the emergence of culture but also enable its transmission across generations of agents. Additionally, we examine the benefits of coordinating behavior and signaling within individual agents' neural networks.
- Abstract(参考訳): 本研究では,部族に組織化された自律的エージェントが,コミュニケーション信号を用いて行動の協調と集団的効率の向上を学習する方法について検討する。
NEC-DAC(Neurally Encoded Culture - Distributed Autonomous Communicators)システムでは,各エージェントが独自のニューラルネットワークを使用して意思決定を行う。
本研究は、これらのエージェント集団における文化の自己組織化と、コミュニケーション戦略の変化が彼らの適合性と協力にどのように影響するかに焦点を当てる。
権威階層などの異なる社会構造を解析することにより、協力の文化が部族のパフォーマンスに大きな影響を及ぼすことを示す。
さらに, シグナルが文化の出現を促進するだけでなく, 代々のエージェント間の伝達を可能にする方法についても検討する。
さらに、個々のエージェントのニューラルネットワーク内での行動調整とシグナル伝達の利点について検討する。
関連論文リスト
- Collaborative Gym: A Framework for Enabling and Evaluating Human-Agent Collaboration [51.452664740963066]
Collaborative Gymは、エージェント、人間、タスク環境間の非同期で三分割的なインタラクションを可能にするフレームワークである。
シミュレーション条件と実環境条件の両方において,Co-Gymを3つの代表的なタスクでインスタンス化する。
その結果、協調作業員はタスクパフォーマンスにおいて、完全に自律的なエージェントよりも一貫して優れていたことが判明した。
論文 参考訳(メタデータ) (2024-12-20T09:21:15Z) - Scaling Large Language Model-based Multi-Agent Collaboration [72.8998796426346]
近年の大規模言語モデル駆動型自律エージェントのブレークスルーにより、複数エージェントのコラボレーションが集団的推論を通じて各個人を上回ることが判明している。
本研究は、協調剤の連続的な添加が同様の利益をもたらすかどうかを考察する。
論文 参考訳(メタデータ) (2024-06-11T11:02:04Z) - Enhancing Cooperation through Selective Interaction and Long-term Experiences in Multi-Agent Reinforcement Learning [10.932974027102619]
本研究では,空間的囚人のジレンマゲームにおけるマルチエージェント強化学習に基づく計算フレームワークを提案する。
2つの異なるQ-ネットを用いて各エージェントをモデル化することにより、協調と相互作用の共進化ダイナミクスを解き放つ。
論文 参考訳(メタデータ) (2024-05-04T12:42:55Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - Learning to Influence Human Behavior with Offline Reinforcement Learning [70.7884839812069]
人間の準最適性を捉える必要があるような環境での影響に焦点を当てる。
人間によるオンライン実験は安全ではない可能性があり、環境の高忠実度シミュレータを作成することは現実的ではないことが多い。
オフライン強化学習は、観察された人間・人間の行動の要素を拡張し、組み合わせることで、人間に効果的に影響を及ぼすことができることを示す。
論文 参考訳(メタデータ) (2023-03-03T23:41:55Z) - Resonating Minds -- Emergent Collaboration Through Hierarchical Active
Inference [0.0]
精神状態(意図,目標)のレベルでの自動調整プロセスが,協調的な問題解決につながるかを検討する。
協調エージェント(HAICA)の階層的アクティブ推論モデルを提案する。
本研究では,信念共鳴と能動的推論により,迅速かつ効率的なエージェント協調が可能であり,協調認知エージェントのビルディングブロックとして機能することを示す。
論文 参考訳(メタデータ) (2021-12-02T13:23:44Z) - ToM2C: Target-oriented Multi-agent Communication and Cooperation with
Theory of Mind [18.85252946546942]
心の理論(Theory of Mind、ToM)は、効果的なコミュニケーションと協力が可能な社会的に知的なエージェントを構築する。
このアイデアは、協調ナビゲーションとマルチセンサーターゲットカバレッジという、2つの典型的な目標指向型マルチエージェントタスクで実証される。
論文 参考訳(メタデータ) (2021-10-15T18:29:55Z) - Interpretation of Emergent Communication in Heterogeneous Collaborative
Embodied Agents [83.52684405389445]
本稿では,コラボレーティブな多目的ナビゲーションタスクCoMONを紹介する。
この課題において、オラクルエージェントは、地図の形式で詳細な環境情報を有する。
視覚的に環境を知覚するナビゲーターエージェントと通信し、目標のシーケンスを見つけるのが任務である。
創発的コミュニケーションはエージェントの観察と3次元環境の空間構造に基礎を置くことができることを示す。
論文 参考訳(メタデータ) (2021-10-12T06:56:11Z) - Behaviour-conditioned policies for cooperative reinforcement learning
tasks [41.74498230885008]
現実世界の様々なタスクにおいて、エージェントは未知のパートナーエージェントタイプと協力する必要がある。
深層強化学習モデルは、必要な機能を提供するためにトレーニングすることができるが、サンプルの非効率性と遅い学習に苦しむことが知られている。
本研究では,行動パターンの異なるエージェントの集団を合成的に生成する手法を提案する。
また、生成されたデータを効率的に利用し、メタ学習能力を得ることができるエージェントアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-10-04T09:16:41Z) - Learning to cooperate: Emergent communication in multi-agent navigation [49.11609702016523]
本稿では,協調ナビゲーションタスクを行うエージェントが,解釈可能な通信プロトコルを学ぶことを示す。
エージェントのポリシーの分析により、創発的信号が状態空間を空間的にクラスタリングすることが明らかになった。
エージェントの集団を用いて,創発的プロトコルは基本構成構造を持つことを示す。
論文 参考訳(メタデータ) (2020-04-02T16:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。