論文の概要: Correspondence-Free Multiview Point Cloud Registration via Depth-Guided Joint Optimisation
- arxiv url: http://arxiv.org/abs/2506.18922v1
- Date: Wed, 18 Jun 2025 05:14:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-25 19:48:23.282804
- Title: Correspondence-Free Multiview Point Cloud Registration via Depth-Guided Joint Optimisation
- Title(参考訳): Depth-Guided Joint Optimisationによる対応不要マルチビューポイントクラウド登録
- Authors: Yiran Zhou, Yingyu Wang, Shoudong Huang, Liang Zhao,
- Abstract要約: 本稿では,新しい対応のないマルチビューポイントクラウド登録手法を提案する。
我々は世界地図を深度マップとして表現し、生の深度情報を利用して非線形最小二乗最適化を定式化する。
提案手法は,特に挑戦的環境において,最先端の手法よりも精度が高い。
- 参考スコア(独自算出の注目度): 11.135379344971765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiview point cloud registration is a fundamental task for constructing globally consistent 3D models. Existing approaches typically rely on feature extraction and data association across multiple point clouds; however, these processes are challenging to obtain global optimal solution in complex environments. In this paper, we introduce a novel correspondence-free multiview point cloud registration method. Specifically, we represent the global map as a depth map and leverage raw depth information to formulate a non-linear least squares optimisation that jointly estimates poses of point clouds and the global map. Unlike traditional feature-based bundle adjustment methods, which rely on explicit feature extraction and data association, our method bypasses these challenges by associating multi-frame point clouds with a global depth map through their corresponding poses. This data association is implicitly incorporated and dynamically refined during the optimisation process. Extensive evaluations on real-world datasets demonstrate that our method outperforms state-of-the-art approaches in accuracy, particularly in challenging environments where feature extraction and data association are difficult.
- Abstract(参考訳): マルチビューポイントクラウド登録は、グローバルに一貫した3Dモデルを構築するための基本的なタスクである。
既存のアプローチは、典型的には複数の点クラウドをまたいだ特徴抽出とデータアソシエーションに依存しているが、これらのプロセスは複雑な環境でグローバルな最適解を得るのが困難である。
本稿では,新しい対応のないマルチビューポイントクラウド登録方式を提案する。
具体的には、大域地図を深度マップとして表現し、生の深度情報を利用して、点雲と大域地図のポーズを共同で推定する非線形最小二乗最適化を定式化する。
特徴抽出やデータアソシエイトに依存する従来の特徴ベースのバンドル調整手法とは異なり,本手法は多フレーム点群を対応するポーズを通してグローバルな深度マップに関連付けることによって,これらの課題を回避している。
このデータアソシエーションは、最適化プロセス中に暗黙的に組み込まれ、動的に洗練される。
提案手法は,特に特徴抽出とデータアソシエーションが困難な環境において,その精度において最先端の手法よりも優れていることを示す。
関連論文リスト
- SaliencyI2PLoc: saliency-guided image-point cloud localization using contrastive learning [17.29563451509921]
SaliencyI2PLocは、Saliencyマップを機能集約に融合させる、対照的な学習アーキテクチャである。
本手法は,都市シナリオ評価データセット上で78.92%のRecall@1と97.59%のRecall@20を実現する。
論文 参考訳(メタデータ) (2024-12-20T05:20:10Z) - Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
マルチウェイポイントクラウドモザイクのための新しいフレームワーク(水曜日)を紹介する。
我々のアプローチの核心は、重複を識別し、注意点を洗練する学習されたペアワイズ登録アルゴリズムODINである。
4つの多種多様な大規模データセットを用いて、我々の手法は、全てのベンチマークにおいて大きなマージンで、最先端のペアとローテーションの登録結果を比較した。
論文 参考訳(メタデータ) (2024-03-30T17:29:13Z) - Self-Supervised Learning for Multimodal Non-Rigid 3D Shape Matching [15.050801537501462]
我々は、メッシュベースの関数マップ正規化と、メッシュとポイントクラウドデータを結合する対照的な損失を組み合わせた、自己教師型マルチモーダル学習戦略を導入する。
我々の形状マッチングアプローチは、三角形メッシュ、完全点雲、部分的に観察された点雲のモード内対応を得ることを可能にする。
提案手法は,いくつかの挑戦的なベンチマークデータセットに対して,最先端の結果を達成できることを実証する。
論文 参考訳(メタデータ) (2023-03-20T09:47:02Z) - DFC: Deep Feature Consistency for Robust Point Cloud Registration [0.4724825031148411]
複雑なアライメントシーンのための学習に基づくアライメントネットワークを提案する。
我々は,3DMatchデータセットとKITTIオドメトリデータセットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2021-11-15T08:27:21Z) - Revisiting Point Cloud Simplification: A Learnable Feature Preserving
Approach [57.67932970472768]
MeshとPoint Cloudの単純化手法は、3Dモデルの複雑さを低減しつつ、視覚的品質と関連する健全な機能を維持することを目的としている。
そこで本研究では,正解点の標本化を学習し,高速点雲の簡易化手法を提案する。
提案手法は、入力空間から任意のユーザ定義の点数を選択し、視覚的知覚誤差を最小限に抑えるために、その位置を再配置するよう訓練されたグラフニューラルネットワークアーキテクチャに依存する。
論文 参考訳(メタデータ) (2021-09-30T10:23:55Z) - Semantic Segmentation for Real Point Cloud Scenes via Bilateral
Augmentation and Adaptive Fusion [38.05362492645094]
現実世界の複雑な環境を直感的に捉えることができますが、3Dデータの生の性質のため、機械認識にとって非常に困難です。
我々は、現実に収集された大規模クラウドデータに対して、重要な視覚的タスク、セマンティックセグメンテーションに集中する。
3つのベンチマークで最先端のネットワークと比較することにより,ネットワークの有効性を実証する。
論文 参考訳(メタデータ) (2021-03-12T04:13:20Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
実際のスキャンされたスパースデータからトレーニング用の大規模なペアリングスパーススキャンポイントセットを得るのは高価で面倒です。
本研究では,SPU-Net と呼ばれる自己監視型点群アップサンプリングネットワークを提案する。
本研究では,合成データと実データの両方について様々な実験を行い,最先端の教師付き手法と同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2020-12-08T14:14:09Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
本稿では,点雲に基づく3次元オブジェクトの補完と分類手法を提案する。
デコーダの段階では,グローバルな活性化エントロピーの最大化を目的とした新しい演算子である地域畳み込みを提案する。
我々は,オブジェクトの完成度や分類,最先端の精度の達成など,異なる3次元タスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2020-08-17T14:32:35Z) - Cascaded Refinement Network for Point Cloud Completion [74.80746431691938]
本稿では,細かな物体形状を合成するための粗大な戦略とともに,カスケード型精細化ネットワークを提案する。
部分入力の局所的な詳細と大域的な形状情報を合わせて考えると、既存の詳細を不完全点集合に保存することができる。
また、各局所領域が同じパターンと基底的真理を持つことを保証し、複雑な点分布を学習するパッチ判別器を設計する。
論文 参考訳(メタデータ) (2020-04-07T13:03:29Z) - Learning multiview 3D point cloud registration [74.39499501822682]
本稿では,エンドツーエンドで学習可能なマルチビュー3Dポイントクラウド登録アルゴリズムを提案する。
このアプローチは、エンドツーエンドのトレーニングが可能で、計算コストが小さく、最先端のマージンよりも優れています。
論文 参考訳(メタデータ) (2020-01-15T03:42:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。