Chain-of-Experts: Unlocking the Communication Power of Mixture-of-Experts Models
- URL: http://arxiv.org/abs/2506.18945v1
- Date: Mon, 23 Jun 2025 02:15:43 GMT
- Title: Chain-of-Experts: Unlocking the Communication Power of Mixture-of-Experts Models
- Authors: Zihan Wang, Rui Pan, Jiarui Yao, Robert Csordas, Linjie Li, Lu Yin, Jiajun Wu, Tong Zhang, Manling Li, Shiwei Liu,
- Abstract summary: Chain-of-Experts (CoE) is a new Mixture-of-Experts (MoE) architecture that introduces sequential expert communication within each layer.<n>To support dynamic expert selection across iterations, CoE employs a dedicated router at each step within a layer.
- Score: 58.54288496296157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Chain-of-Experts (CoE), a new Mixture-of-Experts (MoE) architecture that introduces sequential expert communication within each layer. Unlike traditional MoE models, where experts operate independently in parallel, CoE processes tokens iteratively across a chain of experts inside a layer. To support dynamic expert selection across iterations, CoE employs a dedicated router at each iteration step within a layer. This design allows tokens to re-evaluate and select different experts during each iteration, rather than being statically assigned. As a result, CoE introduces a flexible routing mechanism that increases the diversity of expert combinations and enriches the model's representational capacity. CoE demonstrates improved performance under fixed compute: on math reasoning tasks, it reduces validation loss from 1.20 to 1.12 compared to a standard MoE. Beyond performance, CoE offers a new scaling axis: depth through expert iteration, which complements conventional width/depth scaling. For example, using 2x iterations matches the performance of 3x expert selections (in width), while reducing memory usage by 17.6-42% relative to other scaling strategies. Our analysis reveals that CoE's benefits stem from its iterative residual structure and enhanced expert specialization empowered by iterative routing, which together unlock more expressive representations. Code is available at https://github.com/ZihanWang314/coe.
Related papers
- RouteMark: A Fingerprint for Intellectual Property Attribution in Routing-based Model Merging [69.2230254959204]
We propose RouteMark, a framework for IP protection in merged MoE models.<n>Our key insight is that task-specific experts exhibit stable and distinctive routing behaviors under probing inputs.<n>For attribution and tampering detection, we introduce a similarity-based matching algorithm.
arXiv Detail & Related papers (2025-08-03T14:51:58Z) - Advancing Expert Specialization for Better MoE [22.570561334474252]
Mixture-of-Experts (MoE) models enable efficient scaling of large language models (LLMs) by activating only a subset of experts per input.<n>We observe that the commonly used auxiliary load balancing loss often leads to expert overlap and overly uniform routing.<n>We propose a simple yet effective solution that introduces two complementary objectives.
arXiv Detail & Related papers (2025-05-28T13:09:47Z) - Not All Models Suit Expert Offloading: On Local Routing Consistency of Mixture-of-Expert Models [35.617468386609254]
Mixture-of-Experts (MoE) enables efficient scaling of large language models with sparsely activated experts during inference.<n>Many systems introduce *expert offloading* that caches a subset of experts in fast memory, leaving others on slow memory to run on CPU or load on demand.<n>We show that models that apply MoE on every layer and do not use shared experts exhibit the highest local routing consistency.
arXiv Detail & Related papers (2025-05-21T22:13:09Z) - Union of Experts: Adapting Hierarchical Routing to Equivalently Decomposed Transformer [5.585222292493927]
We propose Union-of-Experts (UoE), which decomposes transformer into an equitant group of experts, and then implement selective routing on input data and experts.<n>Experiments demonstrate that UoE model surpass Full Attention, state-of-art MoEs and efficient transformers.
arXiv Detail & Related papers (2025-03-04T11:01:25Z) - Complexity Experts are Task-Discriminative Learners for Any Image Restoration [80.46313715427928]
We introduce complexity experts" -- flexible expert blocks with varying computational complexity and receptive fields.<n>This preference effectively drives task-specific allocation, assigning tasks to experts with the appropriate complexity.<n>The proposed MoCE-IR model outperforms state-of-the-art methods, affirming its efficiency and practical applicability.
arXiv Detail & Related papers (2024-11-27T15:58:07Z) - MoE++: Accelerating Mixture-of-Experts Methods with Zero-Computation Experts [63.67734699877724]
MoE++ is a general and heterogeneous MoE framework that integrates both Feed-Forward Network(FFN) and zero-computation experts.
MoE++ achieves better performance while delivering 1.1-2.1x expert forward throughput compared to a vanilla MoE model of the same size.
arXiv Detail & Related papers (2024-10-09T18:01:27Z) - Expert-Token Resonance MoE: Bidirectional Routing with Efficiency Affinity-Driven Active Selection [16.062265609569003]
Mixture-of-Experts (MoE) architectures have emerged as a paradigm-shifting approach for large language models (LLMs)<n>We propose a novel expert routing framework that incorporates: (1) An efficient routing mechanism with lightweight computation; (2) An adaptive bidirectional selection mechanism leveraging resonance between experts and tokens; and (3) A module that determines the lower bounds of expert capacity based on dynamic token distribution analysis.
arXiv Detail & Related papers (2024-05-24T02:50:44Z) - Unchosen Experts Can Contribute Too: Unleashing MoE Models' Power by Self-Contrast [58.98411447739218]
Mixture-of-Experts (MoE) has emerged as a prominent architecture for scaling model size while maintaining computational efficiency.
We propose Self-Contrast Mixture-of-Experts (SCMoE), a training-free strategy that utilizes unchosen experts in a self-contrast manner during inference.
Our method is conceptually simple and computationally lightweight, as it incurs minimal latency compared to greedy decoding.
arXiv Detail & Related papers (2024-05-23T12:45:29Z) - T-REX: Mixture-of-Rank-One-Experts with Semantic-aware Intuition for Multi-task Large Language Model Finetuning [31.276142111455847]
Large language models (LLMs) encounter significant adaptation challenges in diverse multitask finetuning.<n>We design a novel framework, mixunderlinetextbfTureunderlinetextbf-of-underlinetextbfRank-onunderlinetextbfE-eunderlinetextbfXper ts (textttT-REX)<n>Rank-1 experts enable a mix-and-match mechanism to quadratically expand the vector subspace of experts with linear parameter overheads, achieving approximate error reduction with optimal
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.