DiffRIS: Enhancing Referring Remote Sensing Image Segmentation with Pre-trained Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2506.18946v1
- Date: Mon, 23 Jun 2025 02:38:56 GMT
- Title: DiffRIS: Enhancing Referring Remote Sensing Image Segmentation with Pre-trained Text-to-Image Diffusion Models
- Authors: Zhe Dong, Yuzhe Sun, Tianzhu Liu, Yanfeng Gu,
- Abstract summary: DiffRIS is a novel framework that harnesses the semantic understanding capabilities of pre-trained text-to-image diffusion models for RRSIS tasks.<n>Our framework introduces two key innovations: a context perception adapter (CP-adapter) and a cross-modal reasoning decoder (PCMRD)
- Score: 9.109484087832058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Referring remote sensing image segmentation (RRSIS) enables the precise delineation of regions within remote sensing imagery through natural language descriptions, serving critical applications in disaster response, urban development, and environmental monitoring. Despite recent advances, current approaches face significant challenges in processing aerial imagery due to complex object characteristics including scale variations, diverse orientations, and semantic ambiguities inherent to the overhead perspective. To address these limitations, we propose DiffRIS, a novel framework that harnesses the semantic understanding capabilities of pre-trained text-to-image diffusion models for enhanced cross-modal alignment in RRSIS tasks. Our framework introduces two key innovations: a context perception adapter (CP-adapter) that dynamically refines linguistic features through global context modeling and object-aware reasoning, and a progressive cross-modal reasoning decoder (PCMRD) that iteratively aligns textual descriptions with visual regions for precise segmentation. The CP-adapter bridges the domain gap between general vision-language understanding and remote sensing applications, while PCMRD enables fine-grained semantic alignment through multi-scale feature interaction. Comprehensive experiments on three benchmark datasets-RRSIS-D, RefSegRS, and RISBench-demonstrate that DiffRIS consistently outperforms existing methods across all standard metrics, establishing a new state-of-the-art for RRSIS tasks. The significant performance improvements validate the effectiveness of leveraging pre-trained diffusion models for remote sensing applications through our proposed adaptive framework.
Related papers
- SeG-SR: Integrating Semantic Knowledge into Remote Sensing Image Super-Resolution via Vision-Language Model [23.383837540690823]
High-resolution (HR) remote sensing imagery plays a vital role in a wide range of applications, including urban planning and environmental monitoring.<n>Due to limitations in sensors and data transmission links, the images acquired in practice often suffer from resolution degradation.<n>Remote Sensing Image Super-Resolution (RSISR) aims to reconstruct HR images from low-resolution (LR) inputs, providing a cost-effective and efficient alternative to direct HR image acquisition.
arXiv Detail & Related papers (2025-05-29T02:38:34Z) - Multimodal LLM-Guided Semantic Correction in Text-to-Image Diffusion [52.315729095824906]
MLLM Semantic-Corrected Ping-Pong-Ahead Diffusion (PPAD) is a novel framework that introduces a Multimodal Large Language Model (MLLM) as a semantic observer during inference.<n>It performs real-time analysis on intermediate generations, identifies latent semantic inconsistencies, and translates feedback into controllable signals that actively guide the remaining denoising steps.<n>Extensive experiments demonstrate PPAD's significant improvements.
arXiv Detail & Related papers (2025-05-26T14:42:35Z) - Representation Discrepancy Bridging Method for Remote Sensing Image-Text Retrieval [15.503629941274621]
This study proposes a Representation Discrepancy Bridging (RDB) method for the Remote Image-Text Retrieval (RSITR) task.<n>Experiments on RSICD and RSITMD datasets show that the proposed RDB method achieves a 6%-11% improvement in mR metrics.
arXiv Detail & Related papers (2025-05-22T14:59:30Z) - AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection [58.67129770371016]
We propose a novel IRSTD framework that reimagines the IRSTD paradigm by incorporating textual metadata for scene-aware optimization.<n>AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy.
arXiv Detail & Related papers (2025-05-21T07:02:05Z) - MegaSR: Mining Customized Semantics and Expressive Guidance for Image Super-Resolution [76.30559905769859]
MegaSR mines customized block-wise semantics and expressive guidance for diffusion-based ISR.<n>We experimentally identify HED edge maps, depth maps, and segmentation maps as the most expressive guidance.<n>Extensive experiments demonstrate the superiority of MegaSR in terms of semantic richness and structural consistency.
arXiv Detail & Related papers (2025-03-11T07:00:20Z) - Scale-wise Bidirectional Alignment Network for Referring Remote Sensing Image Segmentation [12.893224628061516]
The goal of referring remote sensing image segmentation (RRSIS) is to extract specific pixel-level regions within an aerial image via a natural language expression.<n>We propose an innovative framework called Scale-wise Bidirectional Alignment Network (SBANet) to address these challenges.<n>Our proposed method achieves superior performance in comparison to previous state-of-the-art methods on the RRSIS-D and RefSegRS datasets.
arXiv Detail & Related papers (2025-01-01T14:24:04Z) - HoliSDiP: Image Super-Resolution via Holistic Semantics and Diffusion Prior [62.04939047885834]
We present HoliSDiP, a framework that leverages semantic segmentation to provide both precise textual and spatial guidance for Real-ISR.<n>Our method employs semantic labels as concise text prompts while introducing dense semantic guidance through segmentation masks and our proposed spatial-CLIP Map.
arXiv Detail & Related papers (2024-11-27T15:22:44Z) - Cross-Modal Bidirectional Interaction Model for Referring Remote Sensing Image Segmentation [50.433911327489554]
The goal of referring remote sensing image segmentation (RRSIS) is to generate a pixel-level mask of the target object identified by the referring expression.<n>To address the aforementioned challenges, a novel RRSIS framework is proposed, termed the cross-modal bidirectional interaction model (CroBIM)<n>To further forster the research of RRSIS, we also construct RISBench, a new large-scale benchmark dataset comprising 52,472 image-language-label triplets.
arXiv Detail & Related papers (2024-10-11T08:28:04Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.