Universal framework with exponential speedup for the quantum simulation of quantum field theories including QCD
- URL: http://arxiv.org/abs/2506.18966v1
- Date: Mon, 23 Jun 2025 18:00:00 GMT
- Title: Universal framework with exponential speedup for the quantum simulation of quantum field theories including QCD
- Authors: Jad C. Halimeh, Masanori Hanada, Shunji Matsuura,
- Abstract summary: We present a quantum simulation framework universally applicable to a wide class of quantum systems.<n>Specifically, we generalize an efficient quantum simulation protocol developed for bosonic theories.<n>Our protocols do not assume oracles, but rather present explicit constructions with rigorous resource estimations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a quantum simulation framework universally applicable to a wide class of quantum systems, including quantum field theories such as quantum chromodynamics (QCD). Specifically, we generalize an efficient quantum simulation protocol developed for bosonic theories in [Halimeh et al., arXiv:2411.13161] which, when applied to Yang-Mills theory, demonstrated an exponential resource advantage with respect to the truncation level of the bosonic modes, to systems with both bosons and fermions using the Jordan-Wigner transform and also the Verstraete-Cirac transform. We apply this framework to QCD using the orbifold lattice formulation and achieve an exponential speedup compared to previous proposals. As a by-product, exponential speedup is achieved in the quantum simulation of the Kogut-Susskind Hamiltonian, the latter being a special limit of the orbifold lattice Hamiltonian. In the case of Hamiltonian time evolution of a theory on an $L^d$ spatial lattice via Trotterization, one Trotter step can be realized using $\mathcal{O}(L^d)$ numbers of CNOT gates, Hadamard gates, phase gates, and one-qubit rotations. We show this analytically for any matter content and $\mathrm{SU}(N)$ gauge group with any $N$. Even when we use the Jordan-Wigner transform, we can utilize the cancellation of quantum gates to significantly simplify the quantum circuit. We also discuss a block encoding of the Hamiltonian as a linear combination of unitaries using the Verstraete-Cirac transform. Our protocols do not assume oracles, but rather present explicit constructions with rigorous resource estimations without a hidden cost, and are thus readily implementable on a quantum computer.
Related papers
- The Quantum Paldus Transform: Efficient Circuits with Applications [0.0]
We present the Quantum Paldus Transform: an efficient quantum algorithm for block-diagonalising fermionic, spin-free Hamiltonians in the second quantisation.<n>Our work can be seen as a generalisation of the quantum Schur transform for the second quantisation, made tractable by the Pauli exclusion principle.
arXiv Detail & Related papers (2025-06-10T18:05:31Z) - Exponential improvement in quantum simulations of bosons [0.0]
Hamiltonian quantum simulation of bosons on digital quantum computers requires truncating the Hilbert space to finite dimensions.<n>For lattice quantum field theories such as Yang-Mills theory and QCD, several Hamiltonian formulations and corresponding truncations have been put forward in recent years.<n>We show that the universal framework, advocated by three of the authors, provides a natural avenue to solve the exponential scaling of circuit complexity with $Q$.
arXiv Detail & Related papers (2025-05-05T10:48:52Z) - Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.<n>We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.<n>We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum simulation of Fermi-Hubbard model based on transmon qudit
interaction [0.0]
We introduce a novel quantum simulation approach utilizing qudits to overcome such complexities.
We first demonstrate a Qudit Fermionic Mapping (QFM) that reduces the encoding cost associated with the qubit-based approach.
We then describe the unitary evolution of the mapped Hamiltonian by interpreting the resulting Majorana operators in terms of physical single- and two-qudit gates.
arXiv Detail & Related papers (2024-02-02T09:10:40Z) - Classical variational optimization of PREPARE circuit for quantum phase estimation of quantum chemistry Hamiltonians [0.7332146059733189]
We propose a method for constructing $textttPREPARE$ circuits for quantum phase estimation of a molecular Hamiltonian in quantum chemistry.<n>The $textttPREPARE$ circuit generates a quantum state which encodes the coefficients of the terms in the Hamiltonian as probability amplitudes.
arXiv Detail & Related papers (2023-08-26T05:32:38Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - Lattice Gauge Theory for a Quantum Computer [0.0]
Hamiltonian was introduced two decades ago as an alternative to Wilson's Euclidean lattice QCD with gauge fields represented by bi-linear fermion/anti-fermion operators.
D-theory leads naturally to quantum Qubit algorithms.
Digital quantum computing for gauge theories, the simplest example of U(1) compact QED on triangular lattice is defined.
arXiv Detail & Related papers (2020-02-24T01:16:49Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.