MINGLE: Mixtures of Null-Space Gated Low-Rank Experts for Test-Time Continual Model Merging
- URL: http://arxiv.org/abs/2505.11883v1
- Date: Sat, 17 May 2025 07:24:22 GMT
- Title: MINGLE: Mixtures of Null-Space Gated Low-Rank Experts for Test-Time Continual Model Merging
- Authors: Zihuan Qiu, Yi Xu, Chiyuan He, Fanman Meng, Linfeng Xu, Qingbo Wu, Hongliang Li,
- Abstract summary: Continual model merging integrates independently fine-tuned models sequentially without access to original training data.<n> MINGLE is a novel framework for test-time continual model merging using a small set of unlabeled test samples.<n> MINGLE consistently surpasses previous state-of-the-art methods by 7-9% on average across diverse task orders.
- Score: 19.916880222546155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual model merging integrates independently fine-tuned models sequentially without access to original training data, providing a scalable and efficient solution to continual learning. However, current methods still face critical challenges, notably parameter interference among tasks and limited adaptability to evolving test distributions. The former causes catastrophic forgetting of integrated tasks, while the latter hinders effective adaptation to new tasks. To address these, we propose MINGLE, a novel framework for test-time continual model merging, which leverages test-time adaptation using a small set of unlabeled test samples from the current task to dynamically guide the merging process. MINGLE employs a mixture-of-experts architecture composed of parameter-efficient, low-rank experts, enabling efficient adaptation and improving robustness to distribution shifts. To mitigate catastrophic forgetting, we propose Null-Space Constrained Gating, which restricts gating updates to subspaces orthogonal to prior task representations. This suppresses activations on old task inputs and preserves model behavior on past tasks. To further balance stability and adaptability, we design an Adaptive Relaxation Strategy, which dynamically adjusts the constraint strength based on interference signals captured during test-time adaptation. Extensive experiments on standard continual merging benchmarks demonstrate that MINGLE achieves robust generalization, reduces forgetting significantly, and consistently surpasses previous state-of-the-art methods by 7-9\% on average across diverse task orders.
Related papers
- Orthogonal Projection Subspace to Aggregate Online Prior-knowledge for Continual Test-time Adaptation [67.80294336559574]
Continual Test Time Adaptation (CTTA) is a task that requires a source pre-trained model to continually adapt to new scenarios.<n>We propose a novel pipeline, Orthogonal Projection Subspace to aggregate online Prior-knowledge, dubbed OoPk.
arXiv Detail & Related papers (2025-06-23T18:17:39Z) - Train with Perturbation, Infer after Merging: A Two-Stage Framework for Continual Learning [59.6658995479243]
We propose texttext-Perturb-and-Merge (P&M), a novel continual learning framework that integrates model merging into the CL paradigm to avoid forgetting.<n>Through theoretical analysis, we minimize the total loss increase across all tasks and derive an analytical solution for the optimal merging coefficient.<n>Our proposed approach achieves state-of-the-art performance on several continual learning benchmark datasets.
arXiv Detail & Related papers (2025-05-28T14:14:19Z) - Sculpting Subspaces: Constrained Full Fine-Tuning in LLMs for Continual Learning [19.27175827358111]
Continual learning in large language models (LLMs) is prone to catastrophic forgetting, where adapting to new tasks significantly degrades performance on previously learned ones.<n>We propose a novel continual full fine-tuning approach leveraging adaptive singular value decomposition (SVD)<n>We evaluate our approach extensively on standard continual learning benchmarks using both encoder-decoder (T5-Large) and decoder-only (LLaMA-2 7B) models.
arXiv Detail & Related papers (2025-04-09T17:59:42Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.<n>Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.<n>We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - Adaptive Cascading Network for Continual Test-Time Adaptation [12.718826132518577]
We study the problem of continual test-time adaption where the goal is to adapt a source pre-trained model to a sequence of unlabelled target domains at test time.
Existing methods on test-time training suffer from several limitations.
arXiv Detail & Related papers (2024-07-17T01:12:57Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - Generalized Robust Test-Time Adaptation in Continuous Dynamic Scenarios [18.527640606971563]
Test-time adaptation (TTA) adapts pre-trained models to test distributions during the inference phase exclusively employing unlabeled test data streams.
We propose a Generalized Robust Test-Time Adaptation (GRoTTA) method to effectively address the difficult problem.
arXiv Detail & Related papers (2023-10-07T07:13:49Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.