Quantitative Benchmarking of Anomaly Detection Methods in Digital Pathology
- URL: http://arxiv.org/abs/2506.19234v1
- Date: Tue, 24 Jun 2025 01:39:23 GMT
- Title: Quantitative Benchmarking of Anomaly Detection Methods in Digital Pathology
- Authors: Can Cui, Xindong Zheng, Ruining Deng, Quan Liu, Tianyuan Yao, Keith T Wilson, Lori A Coburn, Bennett A Landman, Haichun Yang, Yaohong Wang, Yuankai Huo,
- Abstract summary: Anomaly detection holds significant potential for applications in digital pathology.<n>The unique characteristics of pathology images, such as their large size, multi-scale structures, stain variability, and repetitive patterns, introduce new challenges that current anomaly detection algorithms struggle to address.<n>We benchmark over 20 classical and prevalent anomaly detection methods through extensive experiments.
- Score: 14.521034802806053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection has been widely studied in the context of industrial defect inspection, with numerous methods developed to tackle a range of challenges. In digital pathology, anomaly detection holds significant potential for applications such as rare disease identification, artifact detection, and biomarker discovery. However, the unique characteristics of pathology images, such as their large size, multi-scale structures, stain variability, and repetitive patterns, introduce new challenges that current anomaly detection algorithms struggle to address. In this quantitative study, we benchmark over 20 classical and prevalent anomaly detection methods through extensive experiments. We curated five digital pathology datasets, both real and synthetic, to systematically evaluate these approaches. Our experiments investigate the influence of image scale, anomaly pattern types, and training epoch selection strategies on detection performance. The results provide a detailed comparison of each method's strengths and limitations, establishing a comprehensive benchmark to guide future research in anomaly detection for digital pathology images.
Related papers
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Towards Universal Unsupervised Anomaly Detection in Medical Imaging [13.161402789616004]
We present a novel unsupervised anomaly detection approach, termed textitReversed Auto-Encoders (RA), designed to create realistic pseudo-healthy reconstructions.
We evaluate the proposed method across various imaging modalities, including magnetic resonance imaging (MRI) of the brain, pediatric wrist X-ray, and chest X-ray.
Our unsupervised anomaly detection approach may enhance diagnostic accuracy in medical imaging by identifying a broader range of unknown pathologies.
arXiv Detail & Related papers (2024-01-19T11:35:07Z) - Gravity Network for end-to-end small lesion detection [50.38534263407915]
This paper introduces a novel one-stage end-to-end detector specifically designed to detect small lesions in medical images.
Precise localization of small lesions presents challenges due to their appearance and the diverse contextual backgrounds in which they are found.
We refer to this new architecture as GravityNet, and the novel anchors as gravity points since they appear to be "attracted" by the lesions.
arXiv Detail & Related papers (2023-09-22T14:02:22Z) - Explainable Anomaly Detection in Images and Videos: A Survey [49.07140708026425]
Anomaly detection and localization of visual data, including images and videos, are of great significance in machine learning academia and applied real-world scenarios.
Despite the rapid development of visual anomaly detection techniques in recent years, the interpretations of these black-box models and reasonable explanations of why anomalies can be distinguished out are scarce.
This paper provides the first survey concentrated on explainable visual anomaly detection methods.
arXiv Detail & Related papers (2023-02-13T20:17:41Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare.
The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns.
This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning.
arXiv Detail & Related papers (2022-11-09T22:40:22Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Image Synthesis as a Pretext for Unsupervised Histopathological
Diagnosis [3.7692411550925673]
Anomaly detection in visual data refers to the problem of differentiating abnormal appearances from normal cases.
Recent advances in deep generative-based models have sparked interest in applying such methods for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-04-28T14:37:23Z) - Deep Learning for Medical Anomaly Detection -- A Survey [38.32234937094937]
This survey is to provide a thorough theoretical analysis of popular deep learning techniques in medical anomaly detection.
We contribute a coherent and systematic review of state-of-the-art techniques, comparing and contrasting their architectural differences as well as training algorithms.
In addition, we outline the key limitations of existing deep medical anomaly detection techniques and propose key research directions for further investigation.
arXiv Detail & Related papers (2020-12-04T02:09:37Z) - Anomaly Detection in Univariate Time-series: A Survey on the
State-of-the-Art [0.0]
Anomaly detection for time-series data has been an important research field for a long time.
Recent years an increasing number of machine learning algorithms have been developed to detect anomalies on time-series.
Researchers tried to improve these techniques using (deep) neural networks.
arXiv Detail & Related papers (2020-04-01T13:22:34Z) - Anomalous Example Detection in Deep Learning: A Survey [98.2295889723002]
This survey tries to provide a structured and comprehensive overview of the research on anomaly detection for Deep Learning applications.
We provide a taxonomy for existing techniques based on their underlying assumptions and adopted approaches.
We highlight the unsolved research challenges while applying anomaly detection techniques in DL systems and present some high-impact future research directions.
arXiv Detail & Related papers (2020-03-16T02:47:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.